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S1 Full notation dictionary

Here we list all notation used in the main text of the paper, where more precise definitions are

given. The order is alphabetical, with Roman and Greek letters intermixed and some numerical/math

notation at the end.

• a = 1, . . . , R: bootstrap replicates

• A: generic set in RK−1

• (A1), (A2): superscripts indicating probability with respect to Analyst 1’s or Analyst 2’s model

• α: ∈ (0, 1), level of confidence interval

• B: bias matrix in Proposition 3

• B̂: estimate of B

• Bh: bias of harmonized estimator in simple setting

• b = (b1, . . . , bK) = B1K×1: row sums of B matrix
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• b̂ = (b̂1, . . . , b̂K) = B̂1K×1: estimate of b

• β: d-dimensional vector of regression coefficients for covariate vector X (used in both linear and

logit models)

• β̂(r+e): MLE of β under model (29) (pooled logistic regression at beginning of 3.2)

• β̂(r): MLE of β under version of logistic model (29) using RCT data only

• β◦: limit in probability of β̂(r+e) in the logistic regression example (Section 3.2)

• c =
(
π⊤Σπ

)−1
: constant used in definition of harmonized estimator

• c′ =
(
π′⊤Σ′π′

)−1
: constant for harmonized estimator when groups K and K − 1 are merged

• Cov(Z,U): covariance between random variables/vectors Z and U , i.e. E
(
(Z − E(Z))(U − E(U))⊤

)
• (cut): superscript indicating probability with respect to the plug-in distribution in Section 2.3

• γ1:K = (γ1, . . . , γK): subgroup-specific mean outcome difference of EC vs. RCT controls

• D(r), D(e): data sets for the RCT and EC respectively, including variables (Ti,Wi, Yi, Xi)

• D
(r)
a , D

(e)
a : the a-th bootstrap replicate of D(r), D(e)

• d: dimension of covariates Xi

• diag(ak): diagonal matrix with k × k-th entry = ak

• ∆γ : parameter controlling difference in γ1:K between successive subgroups, i.e. γ1:K = (γ +

∆γ , γ −∆γ , γ +∆γ , . . . ) for γ ∈ R

• δ1:K = (δ1, . . . , δk): subgroup-specific “bias” of EC data on logit scale

• ∂v
∂z : Jacobian matrix of some vector v ∈ Rm with respect to some z ∈ Rw

• E(·): expectation

• (e): superscript indicating EC data set

• Ĝk: bootstrap distribution of θ̂hk

• g: (logit) link function

• h: superscript to indicate harmonized estimator

• η1:K = (η1, . . . , ηK): subgroup-specific treatmnet effect on logit scale

• η̂
(r+e)
1:K : MLE of η1:K under (29) (pooled logistic regression at beginning of 3.2)

• η̂
(r)
1:K : MLE of η1:K under version of logistic model (29) using RCT data only

• η◦1:K : limit in probability of η̂
(r+e)
1:K

• i: subscript for person i (in either RCT or EC data)
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• IK : K ×K identity matrix

• k = 1, . . . ,K: subgroup index

• κ: real constant used in the equation Σπ = κb

• ℓ = 1, . . . ,K − 1: subgroup index used to define invariance to merging subgroups

• λ ∈ [0,∞]: parameter used to define the harmonized estimator

• M1: n
(r+e) × (2K + d) design matrix for the pooled linear/logistic regression model (21)/(29),

with columns corresponding to µ1:K , θ1:K , and β (linear case) or ν1:K , η1:K , and β (logistic case)

• M2: n
(r+e) × K additional design matrix columns corresponding to γ1:K (linear case) or δ1:K

(logistic case), i.e. for model(S3.8.1)/(32) the design matrix is
[
M1 M2

]
• M0: n

(r) × (2 + d) design matrix for the RCT-only primary analysis linear model (20)

• m(A1): prior mean of (µ, θ) in Analyst 1’s model

• m(A2): prior mean of (µ1:K , θ1:K) in Analyst 2’s model

• µ: overall mean of Y in the RCT control group (when X = 0 for models with covariates)

• µ1:K : subgroup-specific means of Y in the RCT control group (when X = 0 for models with

covariates)

• N : univariate normal distribution, e.g. Y ∼ N(0, 1)

• Nk: k-variate normal distribution, e.g. (µ, θ) ∼ N2

(
m(A1), τ (A1)

)
• n

(s)
k,t : number of patients in subgroup k = 1, . . . ,K, treatment arm t ∈ {0, 1} (control and

treatment respectively), and data set s ∈ {r, e, r + e} (RCT, EC, and RCT + EC combined)

• n
(s)
k,· : number of patients in subgroup k and data set s

• n
(s)
·,t : number of patients in treatment arm t in data set s

• n(s): total number of patients in data set s

• ν1:K = (ν1, . . . , νK): subgroup-specific control group “mean” parameter on the logit scale

• ν̂
(r+e)
1:K : MLE of ν1:K under (29) (pooled logistic regression at beginning of 3.2)

• ν̂
(r)
1:K : MLE of ν1:K under version of logistic model (29) but using RCT data only

• ν◦1:K : limit in probability of ν̂
(r+e)
1:K in the logistic regression example (Section 3.2)

• p(·): in some cases probability density/mass of a value of a random variable, in other cases the

probability of an event (may take a superscript to indicate the distribution)

• P =
[
IK − uπ⊤ u

]
, in Proposition 3
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• ϕ2: residual variance of Y given subgroup (in model (6), and also given covariates in model(S3.8.1))

• π = (π1, . . . , πK): subgroup prevalences in RCT

• Π = diag(πk)

• π′ = (π1, . . . , πK−2, πK−1 + πK)

• q =
n
(r)
·,0

n
(r)
·,0+n

(e)
·,0

: proportion of controls in the RCT (vs. RCT + EC combined)

• Q = diag(Qk,k) and Qk,K =
n
(r)
k,0

n
(r)
k,0+n

(e)
k,0

: subgroup-specific proportions of controls in RCT (vs.

RCT + EC combined)

• q̄ =
∑K

k=1 πkQk,k

• (r): superscript indicating RCT data set

• r1(δ1:K): remainder term in the Taylor expansion of θ◦1:K

• r2(δ1:K): remainder term in the Taylor expansion of the limit in probability of θ̂h1:K in Section

3.2 (logistic regression example)

• R: number of replicates in the bootstrap

• ρ̂
(
X

(e)
i

)
: estimate of the “sampling” propensity score, i.e. the probability that a patient with

covariates X
(e)
i would be in the RCT as opposed to EC

• (s): data set index, for s ∈ {r, e, r + e}

• S = V ar
(
θ̂
(r+e)
1:K , θ̂(r)

)
• σ2: residual variance of Y not conditioning on subgroups Wi

• Σ: fixed positive-definite K ×K matrix used to define θ̂h

• Σ̂: random (estimated) positive-definite K ×K matrix used to define θ̂h in Sections 3.2 and 3.3

• Σ′: fixed positive-definite (K − 1)× (K − 1) matrix used to define θ̂′h in Section 2.5 (version of

Σ used after subgroups K and K − 1 are merged)

• Σ
(A2)
1:K : posterior variance of θ1:K in Analyst 2’s model in the cut distribution discussions (Section

2.3 and 2.4)

• Σ
(A1)
θ : posterior variance of θ in Analyst 1’s model in the cut distribution discussions (Section

2.3 and 2.4)

• Σ
(A2)
θ : posterior variance of θ in Analyst 2’s model in the cut distribution discussions (Section

2.3 and 2.4)

• T
(s)
i : binary treatment indicator of patient i in data set s, taking values t ∈ {0, 1}
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• τ (A1): prior variance of (µ, θ) in Analyst 1’s model in the cut distribution discussions (Sections

2.3 and 2.4)

• τ (A2):prior variance of (µ1:K , θ1:K) in Analyst 1’s model in the cut distribution discussions (Sec-

tions 2.3 and 2.4)

• θ: overall treatment effect in RCT population, not conditioning on subgroup

• θ1:K : subgroup-specific treatment effects in RCT population

• θ̂(r): estimator of θ using only D(r)

• θ̂
(r+e)
1:K : estimator of θ1:K using both D(r) and D(e)

• θ̂h1:K : harmonized estimator of θ1:K

• θ̂
(r)
1:K : estimator of θ1:K using only D(r)

• θ̂ora1:K : oracle estimator of θ1:K (with µ1:K known)

• θ̂
(A2)
1:K : posterior mean of θ1:K under Analyst 2’s model in the cut distribution discussions (Section

2.3)

• θ̂1:K : generic estimator of θ1:K used in definition of invariance to merging subgroups

• θ′1:K−1: subgroup-specific treatment effects in RCT population after the original groups K and

K − 1 have been merged

• θ̂′1:K−1: generic estimator of θ′1:K−1 used in definition of invariance to merging subgroups

• θ̂
′(r+e)
1:K−1: estimator of θ′1:K−1 using D(r) and D(e)

• θ̂′h1:K−1: harmonized estimator of θ′1:K−1

• θ◦1:K : limit in probability of θ̂
(r+e)
1:K in the logistic regression example (Section 3.2)

• u = c λ
λ+cΣπ

• v: argument of the objective function defining θ̂h1:K in equation (1)

• V h: variance of θ̂h1:K in the simple example (Section 2.2)

• V (cut): variance of the cut distribution in Sections 2.3 and 2.4

• V ar(U): variance-covariance matrix of a random vector U

• W
(s)
i : subgroup membership for patient i in data set s, taking values in {1, . . . ,K}

• w
(r)
ik : sampling propensity score weight for patient i in subgroup k in the RCT, proportional to

1

• w
(e)
ik : sampling propensity score weight for patient i in subgroup k in the EC, depends on

covariates and subgroup
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• X
(s)
i : d-dimensional pre-treatment covariate vector for patient i in data set s (excluding subgroup

membership)

• Y
(s)
i : (scalar) outcome for patient i in data set s

• Z: matrix describing the linear invariance relation θ̂′1:K−1 = Zθ̂1:K

• 1m×w, 0m×w: m× w matrix in which all entries are 1 or 0 respectively

•

A1, A2

A3, A4

, [A1, A2

]
,

A1
A3

: generic notation for block matrices, where A1, A2, A3, A4 are

conformable matrices

• || · ||1: L1 norm of a vector

S2 Additional material for Section 2

S2.1 Proofs for Section 2.1 (derivation of the harmonized estimator)

The harmonized estimator is defined as

θ̂h1:K = arg min
v

[(
v − θ̂

(r+e)
1:K

)⊤
Σ−1

(
v − θ̂

(r+e)
1:K

)
+ λ

(
π⊤v − θ̂(r)

)2]
. (S2.1.1)

An explicit formula for the harmonized estimator can be found by taking the derivative of the objective

function in (S2.1.1) with respect to v, setting it equal to zero, and solving. Writing h(v) for the

objective function and 0K for a length-K vector of zeros, at the minimizer θ̂h1:K we have

0K = ∇h(θ̂h1:K)

0K = 2Σ−1
(
θ̂h1:K − θ̂

(r+e)
1:K

)
+ 2λ

(
π⊤θ̂h1:K − θ̂(r)

)
π

0K = Σ−1θ̂h1:K − Σ−1θ̂
(r+e)
1:K + λπ⊤θ̂h1:Kπ − λθ̂(r)π

Σ−1θ̂h1:K + λπ⊤θ̂h1:Kπ = Σ−1θ̂
(r+e)
1:K + λθ̂(r)π

Σ−1θ̂h1:K + λπ
(
π⊤θ̂h1:K

)
= Σ−1θ̂

(r+e)
1:K + λθ̂(r)π

Σ−1θ̂h1:K +
(
λππ⊤

)
θ̂h1:K = Σ−1θ̂

(r+e)
1:K + λθ̂(r)π(

Σ−1 + λππ⊤
)
θ̂h1:K = Σ−1θ̂

(r+e)
1:K + λθ̂(r)π

θ̂h1:K =
(
Σ−1 + λππ⊤

)−1 [
Σ−1θ̂

(r+e)
1:K + λθ̂(r)π

]
.

Since π⊤1K = 1, where 1K is a length-K vector of ones, this estimator may also be written

θ̂h1:K =
(
Σ−1 + λππ⊤

)−1 [
Σ−1θ̂

(r+e)
1:K + λππ⊤

(
θ̂(r)1K

)]
. (S2.1.2)

This corresponds to equation (4) in the text. The matrix inverse can also be written as(
Σ−1 + λππ⊤

)−1
= Σ− λ

1 + λπ⊤Σπ
Σππ⊤Σ
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by the Sherman-Morrison inversion formula. Using this substitution we have

θ̂h1:K =

(
Σ− λ

1 + λπ⊤Σπ
Σππ⊤Σ

)[
Σ−1θ̂

(r+e)
1:K + λππ⊤

(
θ̂(r)1K

)]
= θ̂

(r+e)
1:K − λ

1 + λπ⊤Σπ

(
π⊤θ̂

(r+e)
1:K

)
Σπ + λθ̂(r)Σπ − λπ⊤Σπ

λ

1 + λπ⊤Σπ
θ̂(r)Σπ

= θ̂
(r+e)
1:K +

[
λ− λπ⊤Σπ

λ

1 + λπ⊤Σπ

]
θ̂(r)Σπ − λ

1 + λπ⊤Σπ

(
π⊤θ̂

(r+e)
1:K

)
Σπ

= θ̂
(r+e)
1:K +

[
λ
(
1 + λπ⊤Σπ

)
1 + λπ⊤Σπ

−
λ
(
λπ⊤Σπ

)
1 + λπ⊤Σπ

]
θ̂(r)Σπ − λ

1 + λπ⊤Σπ

(
π⊤θ̂

(r+e)
1:K

)
Σπ

= θ̂
(r+e)
1:K +

λ

1 + λπ⊤Σπ
θ̂(r)Σπ − λ

1 + λπ⊤Σπ

(
π⊤θ̂

(r+e)
1:K

)
Σπ

θ̂h1:K = θ̂
(r+e)
1:K + c

λ

λ+ c

(
θ̂(r) − π⊤θ̂

(r+e)
1:K

)
Σπ,

where c =
(
π⊤Σπ

)−1
. This corresponds to equation (5) in the text.

S2.2 Proofs for Section 2.2 (Proposition 1 and its generalization)

Here we first prove equation (10), which gives the bias and variance of θ̂h1:K in a more general setting.

Then equations (7) and (8) in Proposition 1 are a special case.

S2.2.1 Generalization

Equation (10) in the text gives the bias and variance of θ̂h1:K when:

1. The outcome is sampled according to the model

Y
(r)
i |W (r)

i , T
(r)
i

iid∼ N
(
µ
W

(r)
i

+ θ
W

(r)
i

T
(r)
i , ϕ2

)
, and

Y
(e)
i |W (e)

i
iid∼ N

(
µ
W

(e)
i

+ γ
W

(e)
i

, ϕ2
)
.

(6)

2. The RCT trial design satisfies the condition

πk =
n
(r)
k,·

n(r)
=
n
(r)
k,0

n
(r)
·,0

=
n
(r)
k,1

n
(r)
·,1

. (S2.2.1)

This is satisfied when subgroups are recruited proportional to the true subpopulation sizes and

randomization is blocked by subgroup (with the same randomization ratio in each subgroup).

3. The harmonized estimator θ̂h uses as inputs

θ̂(r) = Ȳ
(r)
·,1 − Ȳ

(r)
·,0

and

θ̂
(r+e)
k = Ȳ

(r)
k,1 − Ȳ

(r+e)
k,0 .

Claim S1. In this setting, we have

Bh =

(
IK − c

λ

λ+ c
Σππ⊤

)
(IK −Q)γ1:K , and

V h = ϕ2

[
1

n
(r)
·,1

IK +
1

n
(r)
·,0

Q

]
Π−1 +

(
c

λ

λ+ c

)2

(1− q̄)
1

n
(r)
·,0

ϕ2Σππ⊤Σ,

(10)
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where Bh = Bias
(
θ̂h1:K , θ1:K

)
, V h = V ar

(
θ̂h1:K

)
, and Q is a diagonal K ×K matrix with elements

Qk,k =
n
(r)
k,0

n
(r+e)
k,0

(the fraction of subgroup k’s control patients in the RCT as opposed to the RCT and EC

combined).

Proof. For the bias, first note that we may write θ̂
(r+e)
1:K as

θ̂
(r+e)
1:K = Ȳ

(r)
1:K,1 − Ȳ

(r+e)
1:K,0 = Ȳ

(r)
1:K,1 −

[
QȲ

(r)
1:K,0 + (IK −Q) Ȳ

(e)
1:K,·

]
,

where Ȳ
(s)
1:K,t is a length-K vector with components Ȳ

(s)
k,t for s ∈ {r, e, r + e} and t ∈ {0, 1, ·}. It thus

has expectation

E
(
θ̂
(r+e)
1:K

)
= E

(
Ȳ

(r)
1:K,1

)
− E

(
Ȳ

(r+e)
1:K,0

)
= µ1:K + θ1:K − E

[
QȲ

(r)
1:K,0 + (IK −Q) Ȳ

(e)
1:K,·

]
= µ1:K + θ1:K − [Qµ1:K + (IK −Q) (µ1:K + γ1:K)]

= θ1:K − (IK −Q)γ1:K .

So

Bh = E
(
θ̂h1:K

)
− θ1:K

=
(
Σ+ λππ⊤

)−1 [
Σ−1E

(
θ̂
(r+e)
1:K

)
+ λπE

(
θ̂(r)
)]

− θ1:K

=
(
Σ+ λππ⊤

)−1 [
Σ−1θ1:K − Σ−1(IK −Q)γ1:K + λππ⊤θ1:K

]
− θ1:K

= −
(
Σ+ λππ⊤

)−1 [
Σ−1(IK −Q)γ1:K

]
= −

(
Σ− c

λ

λ+ c
Σππ⊤Σ

)
Σ−1(IK −Q)γ1:K

Bh = −
(
IK − c

λ

λ+ c
Σππ⊤

)
(IK −Q)γ1:K .

To find V h, we take the variance of the expression

θ̂h1:K = θ̂
(r+e)
1:K + c

λ

λ+ c

(
θ̂(r) − θ̄(r+e)

)
Σπ,

where recall that we defined θ̄(r+e) = π⊤θ̂
(r+e)
1:K . This requires computing

(i) V ar
(
θ̂
(r+e)
1:K

)
,

(ii) V ar
(
θ̂(r) − θ̄(r+e)

)
, and

(iii) Cov
(
θ̂
(r+e)
1:K ,

(
θ̂(r) − θ̄(r+e)

)
Σπ
)
.

Computing (i) V ar
(
θ̂
(r+e)
1:K

)
Under model (6), we have

V ar
(
θ̂
(r+e)
k

)
=

 1

n
(r)
k,1

+
1

n
(r+e)
k,0

ϕ2 =
 1

n
(r)
k,1

+Qk,k
1

n
(r)
k,0

ϕ2 = [ 1

n
(r)
·,1

+Qk,k
1

n
(r)
·,0

]
1

πk
ϕ2,

9



where by definition Qk,k =
n
(r)
·,0

n
(r+e)
k,0

. Model (6) implies that θ̂
(r+e)
k is independent of θ̂

(r+e)
j for k ̸= j, so

V ar
(
θ̂
(r+e)
1:K

)
= ϕ2

[
1

n
(r)
·,1

IK +
1

n
(r)
·,0

Q

]
Π−1, (S2.2.2)

where Π is a diagonal matrix with elements Πk,k = πk.

Computing (ii) V ar
(
θ̂(r) − θ̄(r+e)

)
Note that V ar

(
θ̂(r) − θ̄(r+e)

)
= V ar

(
θ̂(r)
)
+ V ar

(
θ̄(r+e)

)
− 2Cov

(
θ̂(r), θ̄(r+e)

)
, and V ar

(
θ̂(r)
)
=[

1

n
(r)
·,1

+ 1

n
(r)
·,0

]
ϕ2, by model (6). From above we also have

V ar
(
θ̄(r+e)

)
= π⊤V ar

(
θ̂
(r+e)
1:K

)
π =

K∑
k=1

π2k

[
1

n
(r)
·,1

+Qk,k
1

n
(r)
·,0

]
1

πk
ϕ2 =

[
1

n
(r)
·,1

+ q̄
1

n
(r)
·,0

]
ϕ2, (S2.2.3)

where we define q̄ =
∑K

k=1 πkQk,k. Lastly, note that

Cov
(
θ̂(r), θ̄(r+e)

)
=

K∑
k=1

πkCov
(
θ̂(r), θ̂

(r+e)
k

)
and by model (6)

Cov
(
θ̂(r), θ̂

(r+e)
k

)
= Cov

(
Ȳ

(r)
·,1 − Ȳ

(r)
·,0 , Ȳ

(r)
k,1 −Qk,kȲ

(r)
k,0 − (1−Qk,k)Ȳ

(e)
k,0

)
= Cov

(
Ȳ

(r)
·,1 , Ȳ

(r)
k,1

)
+ Cov

(
Ȳ

(r)
·,0 , Qk,kȲ

(r)
k,0

)
= Cov

(
πkȲ

(r)
k,1 , Ȳ

(r)
k,1

)
+ Cov

(
πkȲ

(r)
k,0 , Qk,kȲ

(r)
k,0

)
= πkV ar

(
Ȳ

(r)
k,1

)
+ πkQk,kV ar

(
Ȳ

(r)
k,0

)
= πk

1

n
(r)
k,1

ϕ2 + πkQk,k
1

n
(r)
k,0

ϕ2

Cov
(
θ̂(r), θ̂

(r+e)
k

)
=

[
1

n
(r)
·,1

+Qk,k
1

n
(r)
·,0

]
ϕ2.

So we have

Cov
(
θ̂(r), θ̄(r+e)

)
=

K∑
k=1

πkCov
(
θ̂(r), θ̂

(r+e)
k

)
=

K∑
k=1

πk

[
1

n
(r)
·,1

+Qk,k
1

n
(r)
·,0

]
ϕ2 = V ar

(
π⊤θ̂

(r+e)
1:K

)
.

Hence

V ar
(
θ̂(r) − θ̄(r+e)

)
= V ar

(
θ̂(r)
)
− V ar

(
θ̄(r+e)

)
= (1− q̄)

1

n
(r)
·,0

ϕ2. (S2.2.4)

Computing (iii) Cov

(
θ̂
(r+e)
1:K ,

(
θ̂(r) − θ̄(r+e)

)
Σπ

)
First, define µ

(r+e)
1:K = E

(
θ̂
(r+e)
1:K

)
and µ(dif) = E

(
θ̂(r) − θ̄(r+e)

)
. Then we compute the matrix

Cov

(
θ̂
(r+e)
1:K ,

(
θ̂(r) − θ̄(r+e)

)
Σπ

)
= E

[(
θ̂
(r+e)
1:K − µ

(r+e)
1:K

)([
θ̂(r) − θ̄(r+e)

]
Σπ − µ(dif)Σπ

)⊤
]

= Cov
(
θ̂
(r+e)
1:K , θ̂(r) − θ̄(r+e)

)
π⊤Σ.
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Here Cov
(
θ̂
(r+e)
1:K , θ̂(r) − θ̄(r+e)

)
is a column vector with the k-th element equal to

Cov
(
θ̂
(r+e)
k , θ̂(r) − θ̄(r+e)

)
= Cov

(
θ̂
(r+e)
k , θ̂(r)

)
− Cov

(
θ̂
(r+e)
k , θ̄(r+e)

)
.

It is easy to see that Cov
(
θ̂
(r+e)
k , θ̂(r)

)
= πkV ar

(
θ̂
(r+e)
k

)
=

[
1

n
(r)
·,1

+Qk,k
1

n
(r)
·,0

]
ϕ2. Since Cov

(
θ̂
(r+e)
k , θ̄(r+e)

)
=[

1

n
(r)
·,1

+Qk,k
1

n
(r)
·,0

]
ϕ2 as well, and Cov

(
θ̂
(r+e)
k , θ̂(r)

)
= 0, we thus have

Cov

(
θ̂
(r+e)
1:K ,

(
θ̂(r) − θ̄(r+e)

)
Σπ

)
= 0K×K . (S2.2.5)

Computing V ar
(
θ̂h1:K

)
We are finally ready to find V ar

(
θ̂h1:K

)
. In particular, using (S2.2.2), (S2.2.4), and (S2.2.5) we have

V ar
(
θ̂h1:K

)
= V ar

(
θ̂
(r+e)
1:K

)
+

(
c

λ

λ+ c

)2

V ar
(
θ̂(r) − π⊤θ̂

(r+e)
1:K

)
Σππ⊤Σ

V ar
(
θ̂h1:K

)
= ϕ2

[
1

n
(r)
·,1

IK +
1

n
(r)
·,0

Q

]
Π−1 +

(
c

λ

λ+ c

)2

(1− q̄)
1

n
(r)
·,0

ϕ2Σππ⊤Σ.

Remark. We note that this derivation of equation (10) uses the mean and covariance structure

of model (6), but not its normality.

S2.2.2 Proposition 1 (special case)

Proposition 1 assumes model (6) and the design condition (S2.2.1) just like equation (10) does, but it

also makes the further design assumptions that:

1. randomization was balanced between treatment and control, i.e.

n
(r)
·,1 = n

(r)
·,0 , (S2.2.6)

2. subgroup proportions in the RCT are equal, i.e.

π = (1/K, . . . , 1/K) , (S2.2.7)

3. and the EC has the same subgroup proportions as the RCT, i.e.

n
(e)
k,·

n(e)
= πk ∀k = 1, . . . ,K. (S2.2.8)

We use the notation 1K×K to denote a K ×K matrix of 1’s.

Proposition 1. Assume model (6) and design conditions (S2.2.1) and (S2.2.6)-(S2.2.8). If Σ−1 = IK ,

then θ̂h1:K ∼ N
(
θ1:K +Bh, V h

)
, where the bias vector Bh is

Bh = −(1− q)

(
IK − 1

K

λ

λ+K
1K×K

)
γ1:K

and the variance-covariance matrix is

V h = K
1

n
(r)
·,0

(1 + q)ϕ2IK +

(
λ

λ+K

)2

(1− q)
1

n
(r)
·,0

ϕ21K×K .
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Proof. θ̂h1:K is normally distributed because it is a linear transformation (see (S2.1.2) and the definitions

of θ̂
(r+e)
1:K and θ̂(r) in this case) of normally distributed data under model (6).

In this simplified setting we have Σ = IK , c = (π⊤π)−1 = K, ππ⊤ = 1
K2 1K×K , Qk,k = q =

n
(r)
·,0

n
(r+e)
·,0

for all k, and Π−1 = KIK . Plugging these values in to (6), the bias becomes

Bh = −
(
IK − c

λ

λ+ c
Σππ⊤

)
(IK −Q)γ1:K = −(1− q)

(
IK − 1

K

λ

λ+K
1K×K

)
γ1:K

and the variance becomes

V h = ϕ2

[
1

n
(r)
·,1

IK +
1

n
(r)
·,0

Q

]
Π−1 +

(
c

λ

λ+ c

)2

(1− q̄)
1

n
(r)
·,0

ϕ2Σππ⊤Σ

= K
1

n
(r)
·,0

(1 + q)ϕ2IK +

(
λ

λ+K

)2

(1− q)
1

n
(r)
·,0

ϕ21K×K

since n
(r)
·,0 = n

(r)
·,1 by (S2.2.6).

S2.3 Replication of Figure 1 by simulation

We simulated data under exactly the same setting as Figure 1, with 2,000 replicates per scenario. As

shown in Figure S1 the results are identical up to Monte Carlo error.

S2.4 Proofs for Section 2.3 (Bayesian interpretation)

To review key notation, recall that Analyst 1 uses the following model for her primary analysis:

Likelihood: Y
(r)
i |T (r)

i , µ, θ
ind.∼ N

(
µ+ θT

(r)
i , σ2

)
Prior: (µ, θ) ∼ N2(m

(A1), τ (A1))

Posterior for θ: θ|Y (r), T (r) ∼ N
(
θ(A1),Σ

(A1)
θ

)
.

And Analyst 2 uses the following model for his subgroup analysis:

Likelihood: Y
(r)
i |T (r)

i ,W
(r)
i , µ1:K , θ1:K

ind.∼ N
(
µ
W

(r)
i

+ θ
W

(r)
i

T
(r)
i , ϕ2

)
Y

(e)
j |Wj , µ1:K

ind.∼ N

(
µ
W

(e)
j

, ϕ2
)

Prior: (µ1:K , θ1:K) ∼ N2K

(
m(A2), τ (A2)

)
Posterior for θ1:K : θ1:K |D(r), D(e) ∼ NK

(
θ
(A2)
1:K ,Σ

(A2)
1:K

)
Posterior for θ: θ|D(r), D(e) ∼ N

(
θ̄(A2),Σ

(A2)
θ

)
.

Analyst 2’s marginal posterior for θ1:K induces the posterior for θ given the fixed π, with mean

θ̄(A1) = π⊤θ
(A2)
1:K and variance Σ

(A2)
θ = π⊤Σ

(A2)
1:K π.

The cut distribution combines these two models via the following joint distribution on (θ1:K , θ):

pcut
(
θ1:K , θ|D(r), D(e)

)
= p(A2)

(
θ1:K |θ,D(r), D(e)

)
· p(A1)

(
θ|Y (r), T (r)

)
,

where the first factor is Analyst 2’s conditional posterior for θ1:K given θ, and the second factor is

Analyst 1’s posterior for θ.

12



Figure S1: (A) Performance summaries of the harmonized estimator (see Proposition 1) and other
estimators (analogous analytic results) for subgroup k = 1, computed by simulation of 2,000 replicated
data sets per scenario. The λ value used to define the harmonized estimator varies on the x-axis. We
illustrate the bias, standard deviation, and the root mean squared error (RMSE) of the estimator as a
function of λ. The scenarios have different γ1:K values: 0K×1 (Scenario 1), constant across subgroups
(Scenario 2), or varying across subgroups, with γ1:K = (1+∆γ , 1−∆γ , 1+∆γ , 1−∆γ , . . . ) and ∆γ = 1
(Scenario 3). (B) The performance of the harmonized estimator (with λ = ∞) for subgroup k = 1
degrades when the subgroup-specific differences γ1:K vary substantially across subgroups, i.e. as ∆γ

grows.
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S2.4.1 Main result

In this section we find the marginal cut distribution for the subgroup effects θ1:K :

pcut
(
θ1:K |D(r), D(e)

)
=

∫
p(A2)

(
θ1:K |θ,D(r), D(e)

)
· p(A1)

(
θ|Y (r), T (r)

)
dθ.

The result is that under the cut distribution

θ1:K ∼ N
(
θ
(cut)
1:K ,Σ

(cut)
1:K

)
,

where

θ
(cut)
1:K = θ

(A2)
1:K +

1

Σ
(A2)
θ

(
θ(A1) − θ̄(A2)

)
Σ
(A2)
1:K π, and

Σ
(cut)
1:K = Σ

(A2)
1:K +

(
1

Σ
(A2)
θ

)2 (
Σ
(A1)
θ − Σ

(A2)
θ

)
Σ
(A2)
1:K ππ⊤Σ

(A2)
1:K .

S2.4.2 Approach of the derivation

To derive this, it is important to keep in mind that the joint cut distribution pcut
(
θ1:K , θ|D(r), D(e)

)
is not fully normal or even continuous because of the deterministic relation θ = π⊤θ1:K (since π is

treated as known by Analyst 2). To avoid this issue, we find pcut
(
θ1:K |D(r), D(e)

)
by first finding

pcut
(
θ1:K−1, θ|D(r), D(e)

)
and then using the transformation

θ1:K = C

θ1:K−1

θ

 where C =

 IK−1 01:K−1

− 1
πK
π⊤1:K−1

1
πK

 .
In particular, we have

pcut
(
θ1:K−1, θ|D(r), D(e)

)
= p(A2)

(
θ1:K−1|θ,D(r), D(e)

)
· p(A1)

(
θ|Y (r), T (r)

)
.

To find the first factor, note that under Analyst 2’s posterior

(θ1:K−1, θ) ∼ N

θ(A2)
1:K−1

θ̄(A2)

 ,
 Σ

(A2)
1:K−1 Σ

(A2)
1:K−1,θ

Σ
(A2)⊤

1:K−1,θ Σ
(A1)
θ

 ,

where θ̄(A2) = π⊤θ
(A2)
1:K , and Σ

(A2)
1:K−1,θ = Σ

(A2)
1:K−1,Kπ with Σ

(A2)
1:K−1,K being the first K − 1 rows of Σ

(A2)
1:K .

So by the conditioning property of the multivariate normal distribution, according to Analyst 2

θ1:K−1|θ ∼ N
(
θ
(A2)
1:K−1 +Σ

(A2)
1:K−1,θΣ

−1
θ

(
θ − θ̄(A2)

)
, Σ

(A2)
1:K−1 − Σ

(A2)
1:K−1,θΣ

−1
θ Σ

(A2)⊤

1:K−1,θ

)
.

Since Analyst 1’s posterior is θ ∼ N
(
θ(A1),Σ

(A1)
θ

)
, under the cut distribution

(θ1:K−1, θ) ∼ N
(
m

(cut)
1:K−1,θ,Σ

(cut)
1:K−1,θ

)
,

where we define

m
(cut)
1:K−1,θ =

θ(A2)
1:K−1 +Σ

(A2)
1:K−1,θΣ

(A1)−1

θ

(
θ(A1) − θ̄(A2)

)
θ(A1)

 ,

Σ
(cut)
1:K−1,θ =

Σ(A2)
1:K−1 +Σ−1

θ (r − 1)Σ
(A2)
1:K−1,θΣ

(A2)⊤

1:K−1,θ rΣ
(A2)
1:K−1,θ

rΣ
(A2)⊤

1:K−1,θ Σ
(A1)
θ


and r = Σ

(A1)
θ Σ

(A2)−1

θ is the ratio of Analyst 1’s posterior variance of θ over Analyst 2’s posterior

variance of θ. m
(cut)
1:K−1,θ can be computed by an application of the law of total expectation. Σ

(cut)
1:K−1,θ
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can be computed by the laws of total variance and covariance,

V ar(cut) (θ1:K−1) = E(A1)
[
V ar(A2) (θ1:K−1|θ)

]
+ V ar(A1)

(
E(A2) [θ1:K−1|θ]

)
= Σ

(A2)
1:K−1 − Σ

(A2)
1:K−1,θΣ

(A1)−1

θ Σ
(A2)⊤

1:K−1,θ + V ar(A1)
(
Σ
(A2)
1:K−1,θΣ

(A2)−1

θ

(
θ − θ̄(A2)

))
= Σ

(A2)
1:K−1 − Σ

(A2)
1:K−1,θΣ

−1
θ Σ

(A2)⊤

1:K−1,θ +Σ
(A1)−1

θ rΣ
(A2)
1:K−1,θΣ

(A2)⊤

1:K−1,θ

= Σ
(A2)
1:K−1 +Σ

(A1)−1

θ (r − 1)Σ
(A2)
1:K−1,θΣ

(A2)⊤

1:K−1,θ

and

Cov(cut) (θ1:K−1, θ) = Cov(A1)
(
E(A2) (θ1:K−1|θ) , θ

)
+ E(A1)

(
Cov(A2) (θ1:K−1, θ|θ)

)
= Cov(A1)

(
Σ
(A2)
1:K−1,θΣ

(A2)−1

θ

(
θ − θ̄(A2)

)
, θ
)
+ 0

= Σ
(A2)
1:K−1,θΣ

(A2)−1

θ Σ
(A1)
θ

= rΣ
(A2)
1:K−1,θ.

Since p(cut)
(
θ1:K−1, θ)|D(r), D(e)

)
is multivariate normal, we can find the marginal distribution

p(cut)
(
θ1:K |D(r), D(e)

)
using the linear transformation

θ1:K =

 IK−1 01:K−1

− 1
πK
π⊤1:K−1

1
πK


︸ ︷︷ ︸

=C

θ1:K−1

θ

 .
So under the cut distribution, θ1:K ∼ N

(
Cm

(cut)
1:K−1,θ, CΣ

(cut)
1:K−1,θC

⊤
)
.

S2.4.3 Computing the mean

For the mean,

Cm
(cut)
1:K−1,θ =

 IK−1 01:K−1

− 1
πK
π⊤1:K−1

1
πK

θ(A2)
1:K−1 +Σ

(A2)
1:K−1,θΣ

(A1)−1

θ

(
θ(A1) − θ̄(A2)

)
θ(A1)



=

 θ
(A2)
1:K−1 +Σ

(A1)−1

θ

(
θ(A1) − θ̄(A2)

)
Σ
(A2)
1:K−1,θ

−π⊤
1:K−1θ

(A2)
1:K−1

πK
−

π⊤
1:K−1Σ

(A2)
1:K−1,θΣ

−1
θ

(
θ(A1)−π⊤θ

(A2)
1:K

)
πK

+ 1
πK
θ(A1)

 . (S2.4.1)

To simplify the last entry of (S2.4.1) further, we will find the following substitutions useful:

• Recall that θ̄(A2) = π⊤θ
(A2)
1:K and notice that θ

(A2)
K =

θ̄(A2)−π⊤
1:K−1θ

(A2)
K−1

πK
implies

−
π⊤1:K−1θ

(A2)
K−1

πK
= θ

(A2)
K − θ̄(A2)

πK
. (S2.4.2)

• Note that Σ
(A2)
θ = π⊤Σ

(A2)
1:K π (because θ = π⊤θ1:K for fixed π), and we can write

π⊤Σ
(A2)
1:K π = π⊤1:K−1Σ

(A2)
1:K−1,1:Kπ + πKΣ

(A2)
K,1:Kπ

where Σ
(A2)
1:K−1,1:K is the firstK−1 rows of Σ

(A2)
1:K and Σ

(A2)
K,1:K is the final row of Σ

(A2)
1:K . Rearranging,

we can write

−
π⊤1:K−1Σ

(A2)
1:K−1,1:Kπ

πK
= ΣK,1:Kπ −

π⊤Σ
(A2)
1:K π

πK
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and recalling that we defined Σ
(A2)
1:K−1,θ = Σ

(A2)
1:K−1,1:Kπ yields

−
π⊤1:K−1Σ

(A2)
1:K−1,1:Kπ

πK
= ΣK,1:Kπ −

Σ
(A2)
θ

πK
. (S2.4.3)

Then the K-th entry of (S2.4.1) equals

= θ
(A2)
K − θ̄(A2)

πK
+

(
ΣK,1:Kπ −

Σ
(A2)
θ

πK

)
1

Σ
(A2)
θ

(
θ(A1) − θ̄

)
+

1

πK
θ(A1)

= θ
(A2)
K +Σ

(A2)−1

θ Σ
(A2)
K,1:Kπ

(
θ(A1) − θ̄(A2)

)
+

1

πK

(
θ(A1) − θ̄(A2)

)
− 1

πK

(
θ(A1) − θ̄(A2)

)
= θ

(A2)
K +Σ

(A2)−1

θ Σ
(A2)
K,1:Kπ

(
θ(A1) − θ̄(A2)

)
.

So (S2.4.1) becomes

m
(cut)
1:K = Cm

(cut)
1:K−1,θ = θ

(A2)
1:K +Σ

(A1)−1

θ

(
θ(A1) − θ̄(A2)

)
Σ
(A2)
1:K π.

S2.4.4 Computing the variance

For the variance, writing S = V ar(cut)
(
θ̂1:K−1

)
= Σ

(A2)
1:K−1 +Σ

(A1)−1

θ (r − 1)Σ
(A2)
1:K−1,θΣ

(A2)⊤

1:K−1,θ,

CΣ
(cut)
1:K−1,θC

⊤ =

 IK−1 01:K−1

− 1
πK
π⊤1:K−1

1
πK

 ·

 S rΣ
(A2)
1:K−1,θ

rΣ
(A2)⊤

1:K−1,θ Σ
(A1)
θ

 ·

 IK−1 − 1
πK
π1:K−1

0⊤1:K−1
1
πK



=

 S rΣ
(A2)
1:K−1,θ

− 1
πK
π⊤1:K−1S + 1

πK
rΣ

(A2)
1:K−1,θ

−1
πK
rπ⊤1:K−1Σ

(A2)
1:K−1,θ +

1
πK

Σ
(A1)
θ

 IK−1 − 1
πK
π1:K−1

0⊤1:K−1
1
πK



=

 S A

A⊤ − 1
πK
A⊤π1:K−1 − 1

π2
K
rπ1:K−1Σ

(A2)
1:K−1,θ +

1
π2
K
Σ
(A1)
θ

 (S2.4.4)

where we write A = −1
πK
Sπ1:K−1 +

1
πK
rΣ

(A2)
1:K−1,θ.

To simplify this expression we use the following numbered substitutions:

• Rearranging substitution (S2.4.3) above from computing the mean, and using Σ
(A2)
K,θ = Σ

(A2)
K,1:Kπ,

we have

π⊤1:K−1Σ
(A2)
1:K−1,θ = Σ

(A1)
θ − πKΣ

(A2)
K,θ . (S2.4.5)

• Note that

Σ
(A2)
θ = π⊤Σ

(A2)
1:K π =

[
π⊤1:K−1 πK

] Σ
(A2)
1:K−1 Σ

(A2)
1:K−1,K

Σ
(A2)
K,1:K−1 Σ

(A2)
K

π1:K−1

πK


= π⊤1:K−1Σ

(A2)
1:K−1π1:K−1 + 2πKπ

⊤
1:K−1Σ

(A2)
1:K−1,K + π2KΣ

(A2)
K

so

π⊤1:K−1Σ
(A2)
1:K−1π1:K−1 = Σ

(A2)
θ − 2πKπ

⊤
1:K−1Σ

(A2)
1:K−1,K − π2KΣ

(A2)
K . (S2.4.6)

• Note that we define Σ
(A2)
K,θ = Σ

(A2)
K,1:Kπ, and Σ

(A2)
K,θ = π⊤Σ

(A2)
1:K,K = π⊤1:K−1Σ

(A2)
1:K−1,K + πKΣ

(A2)
K , so

πKΣ
(A2)
K = π⊤Σ

(A2)
1:K,K − π⊤1:K−1Σ

(A2)
1:K−1,K . (S2.4.7)
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To simplify the K ×K-th entry of (S2.4.4), i.e. Σ
(cut)
K , we may proceed:

Σ
(cut)
K = −

[
−1

πK
π⊤1:K−1S +

1

πK
rΣ

(A2)
1:K−1,θ

]
1

πK
π1:K−1 −

1

π2K
rπ1:K−1Σ

(A2)
1:K−1,θ +

1

π2K
Σ
(A1)
θ

=
1

π2K
π⊤1:K−1Sπ1:K−1 − 2

1

π2K
rπ⊤1:K−1Σ

(A2)
1:K−1,θ +

1

π2K
Σ
(A1)
θ

=
1

π2K
π⊤1:K−1

[
Σ
(A2)
1:K−1 +Σ

(A1)−1

θ (r − 1)Σ
(A2)
1:K−1,θΣ

(A2)⊤

1:K−1,θ

]
π1:K−1 , plug in S

− 2
1

π2K
rπ⊤1:K−1Σ

(A2)
1:K−1,θ +

1

π2K
Σ
(A1)
θ

=
1

π2K
π⊤1:K−1Σ

(A2)
1:K−1π1:K−1 +

1

π2K
Σ
(A2)−1

θ (r − 1)
(
π⊤1:K−1Σ

(A2)
1:K−1,θ

)2
− 2

1

π2K
r
(
π⊤1:K−1Σ

(A2)
1:K−1,θ

)
+

1

π2K
Σ
(A1)
θ

=
1

π2K
π⊤1:K−1Σ

(A2)
1:K−1π1:K−1 +

1

π2K
Σ
(A2)−1

θ (r − 1)
(
Σ
(A2)
θ − πKΣ

(A2)
K,θ

)2
, plug in (S2.4.5)

− 2
1

π2K
r
(
Σ
(A2)
θ − πKΣ

(A2)
K,θ

)
+

1

π2K
Σ
(A1)
θ

=
1

π2K
π⊤1:K−1Σ

(A2)
1:K−1π1:K−1 +Σ

(A2)−1

θ (r − 1)

[
1

π2K
Σ
(A2)2

θ − 2
1

πK
Σ
(A1)
θ Σ

(A2)
K,θ +Σ

(A2)2

K,θ

]
− 2

1

π2K
r
(
Σ
(A2)
θ − πKΣ

(A2)
K,θ

)
+

1

π2K
Σ
(A1)
θ

=
1

π2K

(
Σ
(A2)
θ − 2πKπ

⊤
1:K−1Σ

(A2)
1:K−1,K − π2KΣ

(A2)
K

)
+

1

π2K
(r − 1)Σ

(A2)
θ , plug in (S2.4.6)

− 2
1

πK
(r − 1)Σ

(A2)
K,θ +Σ

(A2)−1

θ (r − 1)Σ
(A2)2

K,θ − 2
1

π2K
rΣ

(A2)
θ

+ 2
1

πK
rΣ

(A2)
K,θ +

1

π2K
rΣ

(A2)
θ

= −Σ
(A2)
K +Σ

(A2)−1

θ (r − 1)Σ
(A2)2

K,θ +
1

π2K
Σ
(A2)
θ

[
1 + (r − 1)− 2r + r

]
︸ ︷︷ ︸

=0

− 2
1

πK

[
π⊤1:K−1Σ

(A2)
1:K−1,K + (r − 1)Σ

(A2)
K,θ − rΣ

(A2)
K,θ

]
= −Σ

(A2)
K +Σ

(A2)−1

θ (r − 1Σ
(A2)2

K,θ − 2
1

πK

[
Σ
(A2)
K,θ − πKΣ

(A2)
K − Σ

(A2)
K,θ

]
, plug in (S2.4.7)

Σ
(cut)
K = ΣK +Σ

(A2)−1

θ (r − 1)Σ
(A2)2

K,θ .
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To simplify the off-diagonals of (S2.4.4), i.e. Σ
(cut)
1:K−1,K , we may proceed:

Σ
(cut)
1:K−1,K =

−1

πK
π⊤1:K−1S +

1

πK
rΣ

(A2)⊤

1:K−1,θ

=
−1

πK
π⊤1:K−1

[
Σ
(A2)
1:K−1 +Σ

(A1)−1

θ (r − 1)Σ
(A2)
1:K−1,θΣ

(A2)⊤

1:K−1,θ

]
+

1

πK
rΣ

(A2)⊤

1:K−1,θ , plug in S

=
−1

πK
π⊤1:K−1Σ

(A2)
1:K−1 −

1

πK
Σ
(A2)−1

θ (r − 1)π⊤1:K−1Σ
(A2)
1:K−1,θΣ

(A2)⊤

1:K−1,θ +
1

πK
rΣ

(A2)⊤

1:K−1,θ

=
−1

πK
π⊤1:K−1Σ

(A2)
1:K−1 −

1

πK
Σ
(A2)−1

θ (r − 1)
(
Σ
(A2)
θ − πKΣ

(A2)
K,θ

)
Σ
(A2)⊤

1:K−1,θ , plug in (S2.4.5)

+
1

πK
rΣ

(A2)⊤

1:K−1,θ

=
−1

πK
π⊤1:K−1Σ

(A2)
1:K−1 −

1

πK
(r − 1)Σ

(A2)⊤

1:K−1,θ +
1

πK
(r − 1)

(
πKΣ

(A2)−1

θ Σ
(A2)
K,θ

)
Σ
(A2)⊤

1:K−1,θ

+
1

πK
rΣ

(A2)⊤

1:K−1,θ

=
−1

πK
π⊤1:K−1Σ

(A2)
1:K−1 +

1

πK
Σ
(A2)⊤

1:K−1,θ +Σ
(A2)−1

θ (r − 1)Σ
(A2)
K,θ Σ

(A2)⊤

1:K−1,θ

=
1

πK

(
Σ
(A2)⊤

1:K−1,θ − π⊤1:K−1Σ
(A2)
1:K−1

)
+Σ

(A2)−1

θ (r − 1)Σ
(A2)
K,θ Σ

(A2)⊤

1:K−1,θ

=
1

πK

(
π⊤Σ

(A2)
1:K−1,1:K − π⊤1:K−1Σ

(A2)
1:K−1

)
+Σ

(A2)−1

θ (r − 1)Σ
(A2)
K,θ Σ

(A2)⊤

1:K−1,θ

=
1

πK

(
πKΣ

(A2)
1;K−1,K

)
+Σ

(A2)−1

θ (r − 1)Σ
(A2)
K,θ Σ

(A2)⊤

1:K−1,θ

Σ
(cut)
1:K−1,K = Σ

(A2)
1:K−1,K +Σ

(A2)−1

θ (r − 1)Σ
(A2)
K,θ Σ

(A2)⊤

1:K−1,θ.

So (S2.4.4) becomes

Σ
(cut)
1:K = CΣ

(cut)
1:K−1,θC

⊤ = Σ
(A2)
1:K +Σ

(A2)−1

θ (r − 1)Σ
(A2)
1:K ππ⊤Σ

(A2)
1:K ,

since Σ
(A2)
1:K,θ = Σ

(A2)
1:K π and Σ

(A2)
1:K is symmetric. This concludes the derivation.

S2.4.5 Condition for the cut estimator in Section 2.3 to be unbiased

We consider data generated under model (6). If γ1 = · · · = γK the cut estimator (equation (16),

Section 2.3) is unbiased when Σ
(A2)
1:K ∝ diag

(
qk
πk

)
(see equation (10)). The posterior variance Σ

(A2)
1:K ,

from conjugacy results (Lindley and Smith, 1972), is equal to

Σ
(A2)
1:K = ϕ2diag

 σ−2
µ + n

(r+e)
k,·(

σ−2
µ + n

(r+e)
k,·

)(
σ−2
θ + n

(r)
k,1

)
− n

(r)2

k,1

 ,

where σ−2
µ is the prior precision of µk and σ−2

θ is the prior precision of θk. When we consider a

non-informative (flat) prior for the parameters µ1:K and θ1:K (i.e., σ−2
µ = σ−2

θ = 0), we have

Σ
(A2)
1:K = ϕ2diag

 n
(r+e)
k,·

n
(r+e)
k,· n

(r)
k,1 − n

(r)2

k,1

 = ϕ2diag

 n
(r+e)
k,·

n
(r)
k,1n

(r+e)
k,0

 .
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Thus Σ
(A2)
1:K ∝ diag

(
qk
πk

)
if

qk
πk

∝
n
(e)
k,0

n
(r)
k,1n

(r+e)
k,0

for all k = 1, . . . ,K. This condition is met when the ratios
n
(e)
k,0

n
(r)
k,0

and
n
(r)
k,1

n
(r)
k,0

remain the same across

subgroups k = 1, . . . ,K.

S2.5 Details for Figure 2 (Cut distribution example)

To generate the data set used for Figure 2, we took a single sample from model (6), with parameter

values µ1:K = (0, 0), θ1:K = (−1, 0), and γ1:K = (0.5, 0.5). We have K = 2 subgroups, with n(r) = 100,

n(e) = 500, and π = (0.4, 0.6). As in the first part of Section 2.2, within each subgroup

n
(r)
k,0

n
(r)
·,0

=
n
(r)
k,1

n
(r)
·,1

=
n
(e)
k,·

n(e)
= πk.

To construct the cut distribution, for Analyst 1 we use the prior parameters m(A1) = 02×1 and

τ (A1) = 100 · I2, and for Analyst 2 we use the prior parameters m(A2) = 04×1 and τ (A2) = 100 · I4.

S2.6 Proof for Section 2.4 (Interval estimation)

Recall from Section S2.4.1 that

Σ
(cut)
1:K = Σ

(A2)
1:K +

(
1

Σ
(A2)
θ

)2 (
Σ
(A1)
θ − Σ

(A2)
θ

)
Σ
(A2)
1:K ππ⊤Σ

(A2)
1:K .

Also recall from equation (10) that

V h = ϕ2

[
1

n
(r)
·,1

IK +
1

n
(r)
·,0

Q

]
Π−1 +

(
c

λ

λ+ c

)2

(1− q̄)
1

n
(r)
·,0

ϕ2Σππ⊤Σ.

Claim S2. Suppose that:

(i) Analysts 1 and 2 use flat priors (τ (A1) and τ (A2) are diagonal with diverging diagonal entries),

(ii) the variance parameters σ2 and ϕ2 in models (12), (13), and (6) (underlying V h) are identical,

and

(iii) θ̂h1:K is defined with λ = ∞ and Σ is diagonal with entries proportional to 1

n
(r)
k,1

+ 1

n
(r+e)
k,0

.

Then V (cut) = V h.

Proof. Note that from equation (10) and assumption (iii) (i.e. λ = ∞) we have

V h = ϕ2

[
1

n
(r)
·,1

IK +
1

n
(r)
·,0

Q

]
Π−1 +

(
π⊤Σπ

)−1
(1− q̄)

1

n
(r)
·,0

ϕ2Σππ⊤Σ

= ϕ2diag

 n
(r+e)
k,·

n
(r)
k,1n

(r+e)
k,0

+
(
π⊤Σπ

)−1
(1− q̄)

1

n
(r)
·,0

ϕ2Σππ⊤Σ.
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In addition, note from assumption (i) and Section S2.4.5 we have

Σ
(A2)
1:K = ϕ2diag

 n
(r+e)
k,·

n
(r)
k,1n

(r+e)
k,0


∝ Σ,

where the second line follows by assumption (iii). Thus

V h = Σ
(A2)
1:K +

(
π⊤Σ

(A2)
1:K π

)−1
(1− q̄)

1

n
(r)
·,0

ϕ2Σ
(A2)
1:K ππ⊤Σ

(A2)
1:K .

Also, from Section S2.4.3, recall that π⊤Σ
(A2)
1:K π = Σ

(A2)
θ . Finally, note that Σ

(A2)−1

θ

(
Σ
(A1)
θ − Σ

(A2)
θ

)
=

(1− q̄) 1

n
(r)
·,0
ϕ2 by assumption (ii) and standard conjugate Bayesian linear regression calculations (Lind-

ley and Smith, 1972). Thus

V h = Σ
(A2)
1:K +

(
1

Σ
(A2)
θ

)2 (
Σ
(A1)
θ − Σ

(A2)
θ

)
Σ
(A2)
1:K ππ⊤Σ

(A2)
1:K

= V (cut).

S2.7 Splitting and merging subgroups

Harmonized estimates can be computed for various partitions that group patients in different ways.

For example, a partition of the population can be changed by merging two biomarker subgroups into a

single category. In this subsection we discuss the concept of invariance of the estimator across nested

partitions.

Definition (Invariance). Consider a population partitioned into K subgroups. Without loss of gen-

erality, the investigator merges subgroups K − 1 and K, and creates a new partition of the patient

population. A generic estimation procedure allows the investigator to compute θ̂1:K , the subgroup-

specific treatment effect estimates for the original partition, and the analogous θ̂′1:K−1 for the modified

partition. The procedure is invariant if

θ̂′ℓ =

θ̂ℓ, ℓ < K − 1,

πK−1

πK−1+πK
θ̂K−1 +

πK
πK−1+πK

θ̂K , ℓ = K − 1.

The invariance property that we defined can be summarized by the equation

θ̂′1:K−1 = Zθ̂1:K , where

Z =

 IK−2, 0(K−2)×2

01×(K−2),
πK−1

πK−1+πK
, πK

πK−1+πK

 , and
0m×w denotes an m× w matrix of zeros.

The next proposition describes simple conditions for the harmonized estimator to be invariant

when we merge subgroups.

Proposition S1. Consider the harmonized estimators

θ̂h1:K = θ̂
(r+e)
1:K + c

λ

λ+ c

(
θ̂(r) + π⊤θ̂

(r+e)
1:K

)
Σπ
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(see equation (5)) and

θ̂′h1:K−1 = θ̂
′(r+e)
1:K−1 + c′

λ

λ+ c′

(
θ̂(r) + π′⊤θ̂

′(r+e)
1:K−1

)
Σ′π′,

where π′ = (π1, . . . , πK−2, πK−1+πK) , c =
(
π⊤Σπ

)−1
and c′ =

(
π′⊤Σ′π′

)−1
. If (a) θ̂

′(r+e)
1:K−1 = Zθ̂

(r+e)
1:K ,

and (b) Σ′ = ZΣZ⊤, then θ̂′h1:K−1 = Zθ̂h1:K .

Proof. By its invariance, θ̂
′(r+e)
1:K−1 = Zθ̂

(r+e)
1:K . Then

θ̂′h1:K−1 = Zθ̂
(r+e)
1:K + c′

λ

λ+ c′

(
θ̂(r) + π′⊤Zθ̂

(r+e)
1:K

)
Σ′π′

= Zθ̂
(r+e)
1:K + c′

λ

λ+ c′

(
θ̂(r) + π′⊤Zθ̂

(r+e)
1:K

)
ZΣZ⊤π′

= Zθ̂
(r+e)
1:K + c

λ

λ+ c

(
θ̂(r) + π⊤θ̂

(r+e)
1:K

)
ZΣπ

= Zθ̂h1:K .

Here the second equation plugs in Σ′ = ZΣZ⊤, and the third line follows because Z⊤π′ = π (by

definition of Z and π′), which also implies that c′ =
(
π′⊤Σ′π′

)−1
=
(
π′⊤ZΣZ⊤π′

)−1
=
(
π⊤Σπ

)−1
= c.

So θ̂h1:K is invariant to merging of subgroups.

To summarize, if (a) θ̂
(r+e)
1:K is invariant to merging subgroups and (b) Σ is appropriately redefined

after merging, then θ̂h1:K is also invariant. For example, consider harmonizing a Bayesian subgroup

analysis. First, the investigator computes the posterior p
(
θ1:K |D(r), D(e)

)
and specifies θ̂

(r+e)
1:K in

equation (5) equal to the posterior mean, and Σ equal to the posterior variance of θ1:K . After merging

subgroups K and (K − 1), the investigator computes the posterior p
(
θ′1:K−1|D(r), D(e)

)
of θ′1:K−1 =

Zθ1:K , and plugs into equation (5) the posterior mean and the posterior variance of θ′1:K−1. Since

the posterior p
(
θ′1:K−1|D(r), D(e)

)
has mean Zθ̂

(r+e)
1:K and variance ZΣZ⊤, the harmonized estimates

θ̂1:K and θ̂′1:K−1 — before and after merging — are coherent; indeed Proposition 1 indicates that the

invariance property holds.

In Section 3 we discussed several harmonized estimators; in some cases the input θ̂
(r+e)
1:K is

invariant to the merging of subgroups. For example, with the linear model of Section 3.1 (treatment

effect estimator: equation (21)) the estimator is invariant when the covariates and subgroup indicators

are orthogonal, while in the Section 3.2 the estimator θ̂
(r+e)
1:K based on logistic regression is not invariant.

S2.8 Large sample behavior of harmonization

As shown in equation (5), the harmonized estimator θ̂h1:K is a linear combination of θ̂
(r+e)
1:K and θ̂(r).

This makes it simple to derive the limit in probability of θ̂h1:K when

(i) θ̂
(r+e)
1:K converges in probability,

(ii) θ̂(r) converges in probability, and

(iii) θ̂h1:K uses a (possibly data-driven, see for example Section 3.2) Σ̂ such that Σ̂
p→ Σ for some

invertible K ×K matrix Σ.

In particular if θ̂
(r+e)
1:K

p→ θ1:K , θ̂(r)
p→ θ = π⊤θ1:K , and Σ̂

p→ Σ then equation (5) implies that

θ̂h1:K
p→ θ1:K +

(
π⊤θ1:K − π⊤θ1:K

)
c λ
λ+cΣπ = θ1:K . Note that the same arguments can be used to

discuss the convergence of θ̂h1:K when the limit of θ̂
(r+e)
1:K or θ̂(r) in probability is different from θ1:K
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and π⊤θ1:K respectively. To summarize, the use of a consistent θ̂
(r+e)
1:K estimator results in consistent

harmonized estimators θ̂h1:K for any λ and Σ̂, unless the primary analysis θ̂(r) is inconsistent or Σ̂

does not converge in probability. For example, a subgroup-specific treatment effect estimator based

on Bayesian model averaging ideas as in (Kotalik et al., 2021)) satisfies θ̂
(r+e)
1:K

p→ θ1:K in all three

scenarios of Figure 1.

Figure S2 below is similar to Figure 1 (same scenarios and estimators) but we vary the sample

sizes. Also, λ = ∞. We consider RCT sample sizes n(r) ∈ [60, 1000], with 1:1 randomization and an

EC group 10 times the size of the RCT control group (n(e) = 10 · 12n
(r)). As the sample size increases,

the biases of the estimators remain constant while the variances reduce.

Figure S2: Performance summaries of the harmonized estimator (using Proposition 1) and other
estimators (analogous analytic results) for subgroup k = 1 as the total sample size n(r) of the RCT
varies (x-axis). The RCT has 1:1 randomization and the EC group was 10 times the size of the
RCT control group (n(e) = 10 · 1

2n
(r)). We illustrate the bias, standard deviation, and the root

mean squared error (RMSE) of the estimator as a function of n(r). The scenarios have different γ1:K
values: 0K×1 (Scenario 1), constant across subgroups (Scenario 2), or varying across subgroups, with
γ1:K = (1 +∆γ , 1−∆γ , 1 + ∆γ , 1−∆γ , . . . ) and ∆γ = 1 (Scenario 3).

In addition, we conducted additional simulations for Scenario 3 in Section 3.1 in which the RCT

sample size n(r) was fixed and the EC sample size n(e) increased. Thus n(e)/n(r) → ∞. Results are
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Figure S3: Violation of the SDM assumption. Standard deviation, bias, and RMSE of estimators of
θ1 (setting: linear model, Section 3.1) when the EC sample size varies. Results are based on 2,000
simulation replicates from the same data generating process used in Figure 4, Scenario 3 except that

the EC sample size n(e) varies. The RCT control group size is n
(r)
·,0 = 33, the RCT treatment group

size is n
(r)
·,1 = 67.

shown in Figure S3. They show that the operating characteristics of θ̂h1:K and θ̂
(r+e)
1:K , especially bias

and RMSE, depend on the relative size of n(e) compared to the trial. As expected both estimators

are relatively less biased when n(e) is smaller. However, the ratio of the RMSEs of pooling and

harmonization are relatively stable across all sample sizes we consider.

S3 Additional material for Section 3

S3.1 Proofs for Section 3.1 (linear regression)

S3.1.1 Bias and variance of θ̂
(r+e)
1:K

In this setting we have

θ̂
(r+e)
1:K =

[
0K×K , IK , 0K×d

]
(M⊤

1 M1)
−1M⊤

1

[
Y

(r)

i:n(r)

Y
(e)

i:n(e)

]
,

where M1 is the design matrix for the pooled OLS model (20). Under model (S3.8.1),

E

([
Y

(r)

i:n(r)

Y
(e)

i:n(e)

])
=M1

[
µ1:K
θ1:K
β

]
+M2γ1:K ,

where M2 are the design matrix columns corresponding to γ1:K in model (S3.8.1). Thus

E
(
θ̂
(r+e)
1:K

)
=
[
0K×K , IK , 0K×d

]
(M⊤

1 M1)
−1M⊤

1

(
M1

[
µ1:K
θ1:K
β

]
+M2γ1:K

)
=
[
0K×K , IK , 0K×d

] [ µ1:K
θ1:K
β

]
+
[
0K×K , IK , 0K×d

]
(M⊤

1 M1)
−1M⊤

1 M2γ1:K ,

E
(
θ̂
(r+e)
1:K

)
= θ1:K +

[
0K×K , IK , 0K×d

]
(M⊤

1 M1)
−1M⊤

1 M2γ1:K .

For the variance, recall that V ar

([
Y

(r)

i:n(r)

Y
(e)

i:n(e)

])
= ϕ2In(r)+n(e) , so

V ar
(
θ̂
(r+e)
1:K

)
= ϕ2

[
0K×K , IK , 0K×d

] (
M⊤

1 M1

)−1 [
0K×K , IK , 0K×d

]⊤
.
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S3.1.2 Unbiasedness of θ̂(r)

Here we give sufficient conditions for the OLS estimator of θ under model (S3.8.1) to be unbiased.

Recall that we write M0 for the design matrix of model (20).

Claim S3. Assume that the RCT outcome vector Y
(r)

1:n(r) is sampled independently according to model

(S3.8.1), P
(
W

(r)
i = k|X(r)

i , T
(r)
i

)
= πk for all i and k, and M0 is invertible. Then the estimator

θ̂(r) =
[
0, 1, 01×d

] (
M⊤

0 M0

)−1
M⊤

0 Y
(r)

1:n(r) has bias

E
(
θ̂(r)|T (r)

1:n(r) , X
(r)

1:n(r)

)
− π⊤θ1:K = 0.

Proof. By definition of θ̂(r) we have

E
(
θ̂(r)|T (r)

1:n(r) , X
(r)

1:n(r)

)
=
[
0, 1, 01×d

] (
M⊤

0 M0

)−1
M⊤

0 E
(
Y

(r)
i |T (r)

1:n(r) , X
(r)

1:n(r)

)
. (S3.1.1)

Note that

E
(
Y

(r)
i |T (r)

1:n(r) , X
(r)

1:n(r)

)
= E

(
µ
W

(r)
i

+ θ
W

(r)
i

T
(r)
i + βX

(r)
i |T (r)

i , X
(r)
i

)
= π⊤µ1:K + π⊤θ1:KT

(r)
i + βX

(r)
i .

Therefore E
(
Y

(r)

1:n(r) |T
(r)

1:n(r) , X
(r)

1:n(r)

)
= M0


π⊤µ1:K

π⊤θ1:K

β

 and plugging this in to equation (S3.1.1) con-

cludes the proof.

The bias equals zero if E
(
Y

(r)

1:n(r) |T
(r)

1:n(r) , X
(r)

1:n(r)

)
=M0


π⊤µ1:K

π⊤θ1:K

β

.

S3.1.3 Propositions 3-5

Recall that we use the notation S = V ar
(
θ̂
(r+e)
1:K , θ̂(r)

)
and u = c λ

λ+cΣπ. The harmonized estimator

can be rewritten as

θ̂h1:K = θ̂
(r+e)
1:K +

(
θ̂(r) − π⊤θ̂

(r+e)
1:K

)
u.

Proposition 2. If the following two assumptions hold

(A1) E
(
θ̂(r)
)
− π⊤θ1:K = 0, and

(A2) E
(
θ̂
(r+e)
1:K

)
− θ1:K = Bγ1:K , where B is a K ×K matrix,

then, with P =
[
IK − uπ⊤, u

]
,

Bias
(
θ̂h1:K , θ1:K

)
=
(
IK − uπ⊤

)
Bγ1:K , (27)

V ar
(
θ̂h1:K

)
= PSP⊤. (28)
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Proof. For the bias, note that

E
(
θ̂h1:K

)
− θ1:K = E

(
θ̂
(r+e)
1:K

)
− θ1:K + u

[
E(θ̂(r))− π⊤E

(
θ̂
(r+e)
1:K

)]
= Bγ1:K + u

[
π⊤θ1:K − π⊤θ1:K − π⊤Bγ1:K

]
= Bγ1:K − uπ⊤Bγ1:K

= (IK − uπ⊤)Bγ1:K .

For the variance, note that θ̂h1:K = P
[
θ̂
(r+e)
1:K

θ̂(r)

]
, so V ar

(
θ̂h1:K

)
= PV ar

([
θ̂
(r+e)
1:K

θ̂(r)

])
P⊤ = PSP⊤.

Recall that in the following proposition we use the notation b = (b1, . . . , bK) = B1K×1.

Proposition 3. If assumptions (A1) and (A2) are satisfied, γ1:K = γ1K×1 for some γ ∈ R, and

b ̸= 0K×1, then θ̂h1:K is unbiased (i.e. E
(
θ̂h1:K

)
= θ1:K) if and only if λ = ∞ and Σπ = κb for some

κ ̸= 0.

Proof. ( =⇒ ): By Proposition 2 and the fact that γ1:K ∝ 1K×1, θ̂
h
1:K being unbiased implies that(

IK − uπ⊤
)
b = 0K×1 and b = uπ⊤b, so u is a multiple of b. Since Σπ is a multiple of u, it must also

be a multiple of b (i.e. Σπ = κb for some κ ̸= 0).

Further, we have

b =
(
π⊤Σπ

)−1 λ

λ+ (π⊤Σπ)
−1Σπ

(
π⊤b

)
bπ⊤ =

(
π⊤Σπ

)−1 λ

λ+ (π⊤Σπ)
−1Σππ

⊤
(
π⊤b

)
( ⇐= ): By Proposition 2, we have

(
IK − uπ⊤

)
b = 0K×1.

Proposition 4. There exists a positive definite matrix Σ ∈ RK×K such that Σπ = κb for some κ ̸= 0

if and only if π⊤b ̸= 0.

Proof. ( =⇒ ): Since Σ is positive definite, π⊤Σπ = κπ⊤b > 0. Therefore π⊤b ̸= 0.

( ⇐= ): For convenience we introduce the notation z = b
π⊤b

.

Suppose z is a multiple of π. By definition π⊤z = 1 and since π has all positive entries, z must

be a positive multiple of π. Then Σ can be chosen as Σ = diag
((

zk
πk

)
1:K

)
. Trivially Σπ = z.

Suppose z is not a multiple of π. Then by Cauchy-Schwartz inequality 1 = (π⊤z)2 < ∥π∥22 ∥z∥22.
Hence ∥z∥2 > 1. Define v1 = 2z−π

∥2z−π∥2 . Take ṽ2 = −1−2∥z∥22
2−∥π∥22

π − z and define v2 = ṽ2
∥ṽ2∥2 . It is easy to

verify that {v1, v2} is an orthonormal set, because

v⊤1 ṽ2 =
1

∥2z − π∥2
(2z − π)⊤ṽ2 =

−1

∥2z − π∥2

(
2× 1− 2∥z∥22

2− ∥π∥22
+ 2∥z∥22 −

1− 2∥z∥22
2− ∥π∥22

· ∥π∥22 − 1

)
= 0.

Extend this collection to an orthonormal basis {v1, v2, . . . , vK} of RK . Take λ1 =
z⊤v1
π⊤v1

and λ2 =
z⊤v2
π⊤v2

.

It can be verified that λ1 > 0, λ2 > 0 (using the facts ∥π∥2 < 1, ∥z∥2 > 1). For 3 ≤ i ≤ K, choose any

λi > 0. Define Σ =
∑K

i=1 λiviv
⊤
i . Then Σ is a positive definite matrix and

Σπ =

(
K∑
i=1

λiviv
⊤
i

)
π = λ1v1(v

⊤
1 π) + λ2v2(v2⊤π) = (z⊤v1)v1 + (z⊤v2)v2 = z,

as z ∈ span{v1, v2} and v1, v2 are orthonormal.
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S3.2 Scatter plot comparing the BD harmonized and cut distribution estimators

in 3.1

Figure S4: Scatter plots comparing the BD harmonized estimator (θ̂h−B
1 ) and the cut distribution

estimator (θ̂
(cut)
1 ) in the linear model simulations of paper section 3.1. The simulation settings are

identical to those in Figure 4. The 45◦ line is drawn in red.

S3.3 Proofs for Section 3.2 (logistic regression)

S3.3.1 Limiting value of θ̂
(r+e)
1:K (results)

Recall that in Section 3.2 θ̂
(r+e)
1:K is defined by first computing the maximum likelihood (MLE) estimates(

ν̂
(r+e)
1:K , η̂

(r+e)
1:K , β̂(r+e)

)
of the pooled logistic regression working model

p
(
Y

(r)
i = 1|W (r)

i , T
(r)
i , X

(r)
i

)
= g

(
ν
W

(r)
i

+ η
W

(r)
i

T
(r)
i + β⊤X

(r)
i

)
,

p
(
Y

(e)
i = 1|W (e)

i , X
(e)
i

)
= g

(
ν
W

(e)
i

+ β⊤X
(e)
i

)
,

(29)

where g(x) = 1
1+e−x and the outcomes are independent, and then taking

θ̂
(r+e)
k =

1

n
(r)
k,·

∑
i:W

(r)
i =k

[
g
(
ν̂
(r+e)
k + η̂

(r+e)
k + β̂(r+e)⊤X

(r)
i

)
− g

(
ν̂
(r+e)
k + β̂(r+e)⊤X

(r)
i

)]
. (31)

Our logistic regression results assume that the true data-generating outcome model is

p
(
Y

(r)
i = 1|W (r)

i , T
(r)
i , X

(r)
i

)
= g

(
ν
W

(r)
i

+ η
W

(r)
i

T
(r)
i + β⊤X

(r)
i

)
, and

p
(
Y

(e)
i = 1|W (e)

i , X
(e)
i

)
= g

(
ν
W

(e)
i

+ δ
W

(e)
i

+ β⊤X
(e)
i

)
,

(32)

and the outcomes are independent. Under this model, the parameter of interest is defined as

θk = E
(
Y

(r)
i |T (r)

i = 1,W
(r)
i = k

)
− E

(
Y

(r)
i |T (r)

i = 0,W
(r)
i = k

)
=

∫
X
g
(
νk + ηk + β⊤x

)
f
(r)
k (x)dx−

∫
X
g
(
νk + β⊤x

)
f
(r)
k (x)dx,

(30)
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where the expectation is taken over both the outcome and covariates, with X
(r)
i |W (r)

i = k
iid∼ f

(r)
k and

X
(e)
i |W (e)

i = k
iid∼ f

(e)
k for appropriate densities f

(r)
k , f

(e)
k defined on some space X and k = 1, . . . ,K.

We also use the following regularity conditions for our asymptotics:

(B1) Both n(r) → ∞ and n(e) → ∞. The ratios
n
(r)
·,1

n(r+e) → q
(r)
1,∗ ∈ (0, 1),

n
(r)
·,0

n(r+e) → q
(r)
0,∗ ∈ (0, 1),

n
(e)
·0

n(r+e) →

q
(e)
0,∗ ∈ (0, 1) for each k = 1, . . . ,K. Also,

n
(r)
k,1

n
(r)
·,1

→ πk,
n
(r)
k,0

n
(r)
·,0

→ πk,
n
(e)
k,0

n(e) → πk for for each k = 1, . . . ,K.

(The convergence of these fractions to πk in particular is primarily for simplicity).

(B3) The covariates are iid within each data set and subgroup k = 1, . . . ,K, that is X
(r)
i |W (r)

i =

k
iid∼ f

(r)
k and X

(e)
i |W (e)

i = k
iid∼ f

(e)
k . Here f

(r)
k and f

(e)
k are densities on X such that, jointly with

model (32), E
∣∣∣Yi log g (ν⋆Wi

+ τ⋆Wi
1{Ti = 1}+ β⋆X

(s)
i

)∣∣∣ <∞ for each i and s = r, e.

(B4) In model (32), the parameters (ν1:K , η1:K , β) belong to a compact set.

(B5) The matrix limn→∞
1

n(r+e)E(M⊤
1 DM1) is invertible, where M1 is the design matrix corre-

sponding to model (29) and D is an n(r+e) × n(r+e) matrix with Dii = g′ (νWi + ηWiTi + βXi) for

g′(x) = d
dxg(x).

As we will show, assumptions (B3)-(B5) imply (B2) in the text.

Proposition S2. Under model (32) and assumptions (B1)-(B5), there exists a fixed vector θ◦1:K in

RK such that

θ̂
(r+e)
1:K

p→ θ◦1:K = θ1:K +Bδ1:K + r1 (δ1:K) , (S3.3.1)

where the remainder term r1 (δ1:K) satisfies

lim
δ1:K→0K×1

r1 (δ1:K)

||δ1:K ||1
= 0K×1.

Here B =
∂θ◦1:K
∂δ1:K

∣∣∣
(ν1:K ,η1:K ,β,0K×1)

is the Jacobian matrix of θ◦1:K with respect to δ1:K , evaluated at the

point (ν1:K , η1:K , β, δ1:K = 0K×1). Further, we may write

B =
∂θ◦1:K

∂(ν◦1:K , η
◦
1:K , β

◦)

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

·
∂(ν◦1:K , η

◦
1:K , β

◦)

∂δ1:K

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

. (36)

Claim S4. The first term in (36) is given by

∂θ◦k
∂ν◦k

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

=

∫
X

(
g′(νk + ηk + βx)− g′(νk + βx)

)
f
(r)
k (x)dx,

∂θ◦k
∂η◦k

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

=

∫
X
g′(νk + ηk + βx)f

(r)
k (x)dx,

∂θ◦k
∂β◦

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

=

∫
X

(
g′(νk + ηk + βx)− g′(νk + βx)

)
xf

(r)
k (x)dx,

(S3.3.2)

for k = 1, . . . ,K, where we use the notation g′(x) = d
dxg(x). All other partial derivatives in the first

term of (36) are 0.

The second term in (36) is given by

∂(ν◦1:K , η
◦
1:K , β

◦)

∂δ1:K

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

= lim
n→∞

[
E
(
M⊤

1 DM1

)]−1
E
(
M⊤

1 DM2

)
, (S3.3.3)

where

• M1 is the n(r+e) × (2K + d) design matrix for model (29), containing columns corresponding to

(ν1:K , η1:K , β),

27



• The full design matrix is [M1,M2], with the n(r+e) × K matrix M2 containing columns corre-

sponding to δ1:K , and

• D is a diagonal n(r+e) × n(r+e) matrix with Dii = g′ (νWi + ηWiTi + βXi).

Remark S1. The Jacobians in B,
∂θ◦1:K

∂(ν◦1:K ,η◦1:K ,β◦) and
∂(ν◦1:K ,η◦1:K ,β◦)

∂δ1:K
depend on the unknown parame-

ters (ν1:K , η1:K , β) and the unknown RCT covariate distributions f
(r)
k for k = 1, . . . ,K. Therefore B is

unobserved. However, we can use a plug-in estimation strategy to estimate B consistently. In partic-

ular, suppose that
(
ν̂1:K , η̂1:K , β̂

)
is a consistent estimator of (ν1:K , η1:K , β) and f̂

(r)
k is the empirical

distribution of X
(r)
i |W (r)

i = k. Plugging these estimators into (S3.3.2) gives a consistent estimator of
∂θ◦1:K

∂(ν◦1:K ,η◦1:K ,β◦) . Similarly, if the diagonal matrix D̂ is defined as D̂ii = g′
(
ν̂Wi + τ̂WiTi + β̂Xi

)
then

(M⊤
1 D̂M1)

−1(M⊤
1 D̂M2) is a consistent estimator of

∂(ν◦1:K ,η◦1:K ,β◦)
∂δ1:K

in (S3.3.3). Plugging both into (36)

gives a consistent estimator B̂ of B.

Remark S2. Proposition S2 and Claim S4 also hold for data generated from generalized linear models

if g is appropriately changed in each expression. In particular, suppose that the density of Y
(r)
i , Y

(e)
i

is from an overdispersed exponential family (not necessarily binomial) and g is the canonical (and

continuously differentiable) function such that

E
(
Y

(r)
i |W (r)

i , T
(r)
i , X

(r)
i

)
= g

(
ν
W

(r)
i

+ η
W

(r)
i

T
(r)
i + β⊤X

(r)
i

)
,

E
(
Y

(e)
i |W (e)

i , X
(e)
i

)
= g

(
ν
W

(e)
i

+ δ
W

(e)
i

+ β⊤X
(e)
i

)
.

For example, we might have a Poisson count outcome model with log link function. Then Proposition

S2 and Claim S4 still hold, with g(x) = ex instead of g(x) = 1
1+e−x . The proofs are identical, except

that On and L (see below) must have the appropriate form for the generalized linear model (because

of the canonical link function this does not affect later steps in the derivation).

S3.3.2 Limiting value of θ̂
(r+e)
1:K (proofs)

Proof (Proposition S2). To derive the result we proceed in two steps. First, we show that the

MLE
(
ν̂
(r+e)
1:K , η̂

(r+e)
1:K , β̂(r+e)

)
of model (29) converges in probability to some limit (ν◦1:K , η

◦
1:K , β

◦). As

a result θ̂
(r+e)
1:K converges in probability to a limit θ◦1:K . Then we show that θ◦1:K has the desired form.

For ease of exposition, we introduce notation for the outcomes that is slightly different from

what is used in the rest of the paper. Let Y
(r)
i,k,1 denote the outcome of the ith individual in the RCT

treatment group and subgroup k, and let X
(r)
i,k,1 denote the corresponding covariate. Similarly define

Y
(r)
i,k,0, X

(r)
i,k,0, Y

(e)
i,k,0, X

(e)
i,k,0.

To see the convergence of
(
ν̂
(r+e)
1:K , η̂

(r+e)
1:K , β̂(r+e)

)
, note that by definition they maximize the

following objective function with respect to (ν ′1:K , η
′
1:K , β

′):

On :=
1

n(r+e)

K∑
k=1

∑
i

[
Y

(r)
i,k,1 ln

(
g(ν ′k + η′k + β′X

(r)
i,k,1)

)
+
(
1− Y

(r)
i,k,1

)
ln
(
1− g(ν ′k + η′k + β′X

(r)
i,k,1)

)]
+

1

n(r+e)

K∑
k=1

∑
i

[
Y

(r)
i,k,0 ln

(
g(ν ′k + β′X

(r)
i,k,0)

)
+
(
1− Y

(r)
i,k,0

)
ln
(
1− g(ν ′k + β′X

(r)
i,k,0)

)]
+

1

n(r+e)

K∑
k=1

∑
i

[
Y

(e)
i,k,0 ln

(
g(ν ′k + β′X

(e)
i,k,0)

)
+
(
1− Y

(e)
i,k,0

)
ln
(
1− g(ν ′k + β′X

(e)
i,k,0)

)]
.
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Here On is the observed log likelihood of the working model (29), normalized by the factor 1
n(r+e) .

By the law of large numbers and assumptions (B3)-(B1), On converges in probability to the

following function:

L =q
(r)
1,∗

K∑
k=1

πkE
[
h
(
νk + ηk + βX

(r)
1,k,1, ν

′
k + η′k + β′X

(r)
1,k,1

)]
+

q
(r)
0,∗

K∑
k=1

πkE
[
h
(
νk + βX

(r)
1,k,0, ν

′
k + β′X

(r)
1,k,0

)]
+

q
(e)
0,∗

K∑
k=1

πkE
[
h
(
νk + δk + βX

(e)
1,k,0, ν

′
k + β′X

(e)
1,k,0

)]
,

where h(a, b) := g(a) ln g(b) + (1− g(a)) ln(1− g(b)) = g(a) · b+ ln(1− g(b)) and g(x) = 1
1+e−x . Here

we emphasize that (ν1:K , η1:K , β, δ1:K) are the parameters of the true data-generating model (32) and

(ν ′1:K , η
′
1:K , β

′) are the parameters of the working model (29) used for MLE to get θ̂
(r+e)
1:K . Intuitively,

L is the limit of the expectation of the working log likelihood On, where expectation is taken with

respect to the true outcome model (32) and the covariate model (B3). We define (ν◦1:K , η
◦
1:K , β

◦) as

the value of (ν ′1:K , η
′
1:K , β

′) that maximizes L.
BecauseOn

p→ L, Theorem 2.1 of White (1981) (which holds because of assumption (B4)) implies

that the maximizer of On converges in probability to the maximizer of L, i.e.
(
ν̂
(r+e)
1:K , η̂

(r+e)
1:K , β̂(r+e)

)
p→

(ν◦1:K , η
◦
1:K , β

◦).

To see how this implies the convergence of θ̂
(r+e)
1:K , recall that

θ̂
(r+e)
k =

1

n
(r)
k,·

∑
i:W

(r)
i =k

[
g
(
ν̂
(r+e)
k + η̂

(r+e)
k + β̂(r+e)⊤X

(r)
i

)
− g

(
ν̂
(r+e)
k + β̂(r+e)⊤X

(r)
i

)]
. (31)

Since (31) is a continuous function of
(
ν̂
(r+e)
1:K , η̂

(r+e)
1:K , β̂(r+e)

)
, the continuous mapping theorem com-

bined with assumption (B3) implies that

θ̂
(r+e)
1:K

p→ θ◦k =

∫
X
(g (ν◦k + η◦k + β◦x)− g (ν◦k + β◦x)) fk(x)dx.

Finally, we show that θ◦1:K has the desired form in (S3.3.1). When δ1:K = 0K×1, the MLE

model (29) is correctly specified and therefore (ν◦1:K , η
◦
1:K , β

◦) = (ν1:K , η1:K , β) by standard maximum

likelihood arguments. This also implies that θ◦1:K = θ1:K when δ1:K = 0K×1. Thus using Taylor’s

theorem at the point δ1:K = 0K×1, one gets

θ◦1:K = θ1:K +Bδ1:K + r1 (δ1:K) , (S3.3.1)

where

B =
∂θ◦1:K
∂δ1:K

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

is the Jacobian matrix of θ◦1:K with respect to δ1:K , evaluated at the point (ν1:K , η1:K , β, δ1:K = 0K×1),

and the remainder term r1 (δ1:K) satisfies

lim
δ1:K→0K×1

r1 (δ1:K)

||δ1:K ||1
= 0K×1.

Using the chain rule, we may write

B =
∂θ◦1:K

∂(ν◦1:K , η
◦
1:K , β

◦)

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

·
∂(ν◦1:K , η

◦
1:K , β

◦)

∂δ1:K

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

. (36)
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Proof (Claim S4). To see that the Jacobian
∂θ◦1:K

∂(ν◦1:K ,η◦1:K ,β◦)

∣∣∣
(ν1:K ,η1:K ,β,0K×1)

has the desired form,

first recall that when δ1:K = 0K×1

θ◦k =

∫
X
(g (νk + ηk + βx)− g (νk + βx)) fk(x)dx.

Then we have
∂θ◦k
∂ν◦k

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

=

∫
X

(
g′(νk + ηk + βx)− g′(νk + βx)

)
f
(r)
k (x)dx,

∂θ◦k
∂η◦k

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

=

∫
X
g′(νk + ηk + βx)f

(r)
k (x)dx,

∂θ◦k
∂β◦

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

=

∫
X

(
g′(νk + ηk + βx)− g′(νk + βx)

)
xf

(r)
k (x)dx,

by interchanging the derivatives and integrals (justified by the Leibniz integral rule since g′ is contin-

uous and the parameter space is compact).

To derive the form of the Jacobian
∂(ν◦1:K ,η◦1:K ,β◦)

∂δ1:K

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

, we use the following strat-

egy. Recall that (ν◦1:K , η
◦
1:K , β

◦) are defined as the maximizers of L. This implies that they are

the solutions to the system of equations ∂L
∂(ν′1:K ,η′1:K ,β′)

∣∣∣∣
(ν◦1:K ,η◦1:K ,β◦)

= 0(2K+d)×1. Although this

system has no analytic solution for (ν◦1:K , η
◦
1:K , β

◦), we can still use it to compute the Jacobian
∂(ν◦1:K ,η◦1:K ,β◦)

∂δ1:K

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

by applying the implicit function theorem, as we describe next.

Recall that the implicit function theorem says generically, that if G(x,y) is a continuously

differentiable function and with G(a,b) = 0m×1 at some point (a,b), then locally around this point

y is (implicitly) a function of x and we can compute the derivative

∂y

∂x

∣∣∣∣
x=a

= − ∂G

∂y

∣∣∣∣−1

x=a,y=b

· ∂G
∂x

∣∣∣∣
x=a,y=b

, (S3.3.4)

as long as ∂G
∂y

∣∣∣
x=a,y=b

is invertible.

To apply the implicit function theorem, we use the notation x = (ν1:K , η1:K , β, δ1:K) for the pa-

rameters of the true data-generating model (32), y = (ν ′1:K , η
′
1:K , β

′) for the parameters of the working

model (29), and G(x,y) = ∂L
∂y for the gradient of L with respect to y. When y = (ν◦1:K , η

◦
1:K , β

◦) we

have G(x,y) = 0(2K+d)×1. Recall that we wish to evaluate
∂(ν◦1:K ,η◦1:K ,β◦)

∂δ1:K
when the true parameters

are x = a = (ν1:K , η1:K , β, 0K×1). In this case the limiting parameters are (ν◦1:K , η
◦
1:K , β

◦) = b =

(ν1:K , η1:K , β) by standard MLE arguments (i.e. working model is correctly specified so the MLE

converges to the true parameters). Thus computing (S3.3.4) gives us
∂(ν◦1:K ,η◦1:K ,β◦)

∂δ1:K

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

as desired.

The Jacobians in (S3.3.4) are

− ∂G

∂y

∣∣∣∣−1

x=a,y=b

= lim
n→∞

1

n(r+e)
E(M⊤

1 DM1) , and

∂G

∂x

∣∣∣∣
x=a,y=b

= lim
n→∞

1

n(r+e)
E(M⊤

1 DM2).

(S3.3.5)

Heuristically, these Jacobians are limiting values of the expected Fisher information matrices of model

(29), since L is the limit of the observed log likelihood and G is its gradient (essentially, the limit of the

score function). The Fisher information matrices have the familiar form for GLMs. These formulae
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can also be found by tedious direct calculation of the derivatives of G and using linear algebra to

simplify.

S3.3.3 Proof of Proposition 5

Proposition 6. If assumption (B1) holds, and the sequence of designs ensures that for any value of

δ1:k in model (32)

(A3) θ̂(r)
p→ π⊤θ1:K ,

(A4) θ̂
(r+e)
1:K

p→ θ1:K +Bδ1:K + r1 (δ1:K), where r1 (δ1:K) satisfies expression (35), and

(A5) Σ̂
p→ Σ, where Σ is a positive-definite K ×K matrix,

then

θ̂h1:K
p→ θ1:K +

(
IK − uπ⊤

)
Bδ1:K + r2 (δ1:K) ,

where the approximation error r2 (δ1:K) satisfies

lim
δ1:K→0K×1

r2 (δ1:K)

||δ1:K ||1
= 0K×1.

Proof. Because θ̂h1:K is a continuous function of θ̂
(r+e)
1:K , θ̂(r), and Σ̂, assumptions (B3)-(B5) and the

continuous mapping theorem imply that

θ̂h1:K
p→ θ1:K +Bδ1:K + r1 (δ1:K) + u

[
π⊤θ1:K − π⊤ (θ1:K +Bδ1:K + r1 (δ1:K))

]
= θ1:K +Bδ1:K + r1 (δ1:K)− uπ⊤ (Bδ1:K + r1 (δ1:K))

= θ1:K +Bδ1:K − uπ⊤Bδ1:K + o (|δ1:K |1)

= θ1:K +
(
Ik − uπ⊤

)
Bδ1:K + r2 (δ1:K) ,

where we define r2 (δ1:K) =
(
IK − uπ⊤

)
r1 (δ1:K). By assumption (B4), r2 (δ1:K) satisfies

lim
δ1:K→0K×1

r2 (δ1:K)

||δ1:K ||1
= 0K×1.

S3.4 Simulation details for Section 3.2

S3.4.1 Taking Σ as a variance estimate

In defining θ̂h1:K , one strategy to choose Σ is to take it as an estimate of the sampling variance

V ar
(
θ̂
(r+e)
1:K

)
. For the logistic regression setting we can estimate V ar

(
θ̂
(r+e)
1:K

)
with the delta method

as follows:

1. Let V̂ν,η,β be an estimate of the variance-covariance matrix of
(
ν̂
(r+e)
1:K , η̂

(r+e)
1:K , β̂(r+e)

)
. For in-

stance, this may be an observed Fisher information matrix calculation as done by the glm

function in R.

2. Compute W = ∂θ1:K
∂(ν1:K ,η1:K ,β)

∣∣∣(
ν̂
(r+e)
1:K ,η̂

(r+e)
1:K ,β̂(r+e)

) as in (S3.3.2).

3. Take Σ =WV̂ν,η,βW
⊤.
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S3.4.2 Simulation settings

For the simulations in Section 3.2 we generate outcomes from the logistic regression model

p
(
Y

(r)
i = 1|W (r)

i , T
(r)
i , X

(r)
i

)
= g

(
ν
W

(r)
i

+ η
W

(r)
i

T
(r)
i + β⊤X

(r)
i

)
, and

p
(
Y

(e)
i = 1|W (e)

i , X
(e)
i

)
= g

(
ν
W

(e)
i

+ δ
W

(e)
i

+ β⊤X
(e)
i

)
,

(32)

where g(x) = 1
1+e−x , and the outcomes are independent. As before we generated a single covariate

(i.e. d = 1), X
(r)
i

iid∼ N(0, 1) for i = 1, . . . , n(r) in the RCT and X
(e)
i

iid∼ N(2, 1) for i = 1, . . . , n(e) in

the EC.

We consider K = 5 subgroups and use the parameters ν1:K = (0, . . . , 0), η1:K = (1, 1, 0.5, 0, 0),

β = 0.2 For Figure 5, we take δ1:K = (δ, . . . , δ) for δ ∈ [−1, 1]. For Figure S5 we take δ1:K =

(δ+0.5, δ−0.5, δ+0.5, δ−0.5, δ+0.5, δ+0.5) for δ ∈ [−1, 1]. The data set sample sizes are n(r) = 200,

n(e) = 500, with equal subgroup proportions π = (1/5, . . . , 1/5) in both the RCT and EC. The RCT

has a randomization ratio of 1:1, and randomization is stratified by subgroup as in Section 2.2. For

each scenario (each value of δ1:K) we generate 2000 simulated studies.

S3.4.3 Version of Figure 5 with δ1:K varying across subgroup

Figure S5 is analogous to Figure 5 in the text but with δ1:K varying across subgroups, as described in

the previous subsection. Unlike before, the harmonized estimator is now moderately biased, though

in terms of RMSE it still outperforms the RCT-only estimator, as well as the pooled estimator when

δ1 is large. There is slightly less concordance between the two versions of the harmonized estimator

(θ̂h−B
1 vs. θ̂h−V

1 in Panel C) compared to when δ1:K = 1K×1 (Figure 5), but their performance is very

similar (Panel B).

S3.5 Computation of B for Section 3.3

By arguments nearly identical to before, it can be shown that when θ̂
(r+e)
1:K is estimated by weighted

maximum likelihood as in Section 3.3, Proposition S2 and Claim S4 still hold with minor variations.

In particular, the B matrix in the Taylor approximation θ◦1:K − θ1:K ≈ Bδ1:K follows (S3.3.2) exactly

and a weighted version of (S3.3.3), with

∂(ν◦1:K , η
◦
1:K , β

◦)

∂δ1:K

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

= lim
n→∞

[
E
(
M⊤

1 WDM1

)]−1
E
(
M⊤

1 WDM2

)
,

where W is a diagonal matrix containing the weights used for each individual. Then we can estimate

B consistently the same way as in Remark S1.

S3.6 Generalized linear models

Treatment effect estimates before harmonization. We consider θ̂
(r+e)
1:K based on a GLM. In particular,

θ̂
(r+e)
1:K is obtained (MLE or propensity score weighted MLE) through a model with conditional means

E
(
Y

(r)
i |W (r)

i , T
(r)
i , X

(r)
i

)
= g

(
ν
W

(r)
i

+ η
W

(r)
i

T
(r)
i + β⊤X

(r)
i

)
, and

E
(
Y

(e)
i |W (e)

i , X
(e)
i

)
= g

(
ν
W

(e)
i

+ β⊤X
(e)
i

)
,

(S3.6.1)
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Figure S5: Logistic regression and harmonized estimates. The results are based on 2000 replicates
per scenario. Panel A shows the bias when we estimate θ1 using the pooled estimator and the BD
harmonized estimator as a function of δ1. Panel B shows the root mean squared error of four estimators.
Panel C is a scatter plot comparing the BD harmonized (denoted θ̂h−BD

1 ) estimator and the VD

harmonized (indicated as θ̂h−V D
1 ) estimator across a random subsample of 200 replicates with δ =

1K×1. The true value was θ1 = 0.23.

where g(x) is continuously differentiable and monotone. In the GLM, the outcomes Y
(r)
i and Y

(e)
i

are independently distributed according to an exponential family (e.g.,Poisson) distribution (for all i).

Let ℓ
(r)
i and ℓ

(e)
i be the GLM log-likelihood contributions of Y

(r)
i and Y

(e)
i respectively. We compute

the estimates
(
ν̂
(r+e)
1:K , η̂

(r+e)
1:K , β̂(r+e)

)
that maximize the weighted log-likelihood

Õn =
1

n(r+e)

n(r)∑
i=1

w
(r)
i ℓ

(r)
i +

1

n(r+e)

n(e)∑
i=1

w
(e)
i ℓ

(e)
i .

Here w
(r)
i = 1 and w

(e)
i are propensity score weights as described in Section 3.3. Finally,

θ̂
(r+e)
k =

1

n
(r)
k,·

∑
i:W

(r)
i =k

[
g
(
ν̂
(r+e)
k + η̂

(r+e)
k + β̂(r+e)⊤X

(r)
i

)
− g

(
ν̂
(r+e)
k + β̂(r+e)⊤X

(r)
i

)]
. (S3.6.2)

Unknown data distribution. Similar to Section 3.2, our results (Proposition S2 and Claim S5

below) build on the assumption that the true data-generating outcome model is a GLM based on the

same exponential family and link function, but with conditional means

E
(
Y

(r)
i |W (r)

i , T
(r)
i , X

(r)
i

)
= g

(
ν
W

(r)
i

+ η
W

(r)
i

T
(r)
i + β⊤X

(r)
i

)
,

E
(
Y

(e)
i |W (e)

i , X
(e)
i

)
= g

(
ν
W

(e)
i

+ δ
W

(e)
i

+ β⊤X
(e)
i

)
.

(S3.6.3)
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The parameter of interest is

θk = E
(
Y

(r)
i |T (r)

i = 1,W
(r)
i = k

)
− E

(
Y

(r)
i |T (r)

i = 0,W
(r)
i = k

)
=

∫
X
g
(
νk + ηk + β⊤x

)
f
(r)
k (x)dx−

∫
X
g
(
νk + β⊤x

)
f
(r)
k (x)dx,

(S3.6.4)

with X
(r)
i |W (r)

i = k
iid∼ f

(r)
k and X

(e)
i |W (e)

i = k
iid∼ f

(e)
k , k = 1, . . . ,K.

To prove the subsequent theoretical results, we work with the following mild and convenient

technical conditions:

(C1) Both n(r) → ∞ and n(e) → ∞. The ratios
n
(r)
·,1

n(r+e) → q
(r)
1,∗ ∈ (0, 1),

n
(r)
·,0

n(r+e) → q
(r)
0,∗ ∈ (0, 1),

n
(e)
·0

n(r+e) →

q
(e)
0,∗ ∈ (0, 1) for each k = 1, . . . ,K. Also,

n
(r)
k,1

n
(r)
·,1

→ πk,
n
(r)
k,0

n
(r)
·,0

→ πk,
n
(e)
k,0

n(e) → πk for each k = 1, . . . ,K.

The convergence of these fractions to πk simplifies the derivation of Claim S5.

(C2) There exist sequences of limiting weights w
(s)
i,∗ for s = r, e such that

(
w

(s)
i − w

(s)
i,∗

)
ℓ
(e)
i

p→ 0 as

n(r+e) → ∞. Here w
(s)
i may be a function of all n(r+e) individual pre-treatment covariate vectors

and outcomes.

(C3) The covariates are iid within each data set and subgroup k = 1, . . . ,K, that is X
(r)
i |W (r)

i =

k
iid∼ f

(r)
k and X

(e)
i |W (e)

i = k
iid∼ f

(e)
k . Here f

(r)
k and f

(e)
k are densities on X such that, jointly with

model (S3.6.3), E
∣∣∣w(s)

i,∗ ℓ
(s)
i

∣∣∣ <∞ for each i and s = r, e, and for all parameter values in (S3.6.3).

(C4) In model (S3.6.3) the parameters (ν1:K , η1:K , β) belong to a compact set.

(C5) The matrix limn→∞
1

n(r+e)E(M⊤
1 DM1) is invertible. HereM1 is the design matrix correspond-

ing to model (S3.6.1). Also,D is an n(r+e)×n(r+e) diagonal matrix withDii = wig
′ (νWi + ηWiTi + βXi)

for g′(x) = d
dxg(x) and wi = 1 for RCT patients and wi equal to the propensity score weight for

EC patients. This condition is simply a weighted version of (B5 for Proposition S1).

Together, assumptions (C2)-(C5) are used to ensure that
(
ν̂
(r+e)
1:K , η̂

(r+e)
1:K , β̂(r+e), θ̂

(r+e)
1:K

)
converges

in probability to some point (ν◦1:K , η
◦
1:K , β

◦, θ◦1:K) (which might differ from the true (ν1:K , η1:K , β, θ1:K)).

Proposition S3. Under model (S3.6.3) and assumptions (C1)-(C5), there exists a fixed vector θ◦1:K

in RK such that

θ̂
(r+e)
1:K

p→ θ◦1:K = θ1:K +Bδ1:K + r1 (δ1:K) , (S3.6.5)

where the remainder term r1 (δ1:K) satisfies

lim
δ1:K→0K×1

r1 (δ1:K)

||δ1:K ||1
= 0K×1.

Here B =
∂θ◦1:K
∂δ1:K

∣∣∣
(ν1:K ,η1:K ,β,0K×1)

is the Jacobian matrix of θ◦1:K with respect to δ1:K , evaluated at the

point (ν1:K , η1:K , β, δ1:K = 0K×1). Also, we can write

B =
∂θ◦1:K

∂(ν◦1:K , η
◦
1:K , β

◦)

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

·
∂(ν◦1:K , η

◦
1:K , β

◦)

∂δ1:K

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

. (S3.6.6)

34



Claim S5. The first term in (S3.6.6) is given by

∂θ◦k
∂ν◦k

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

=

∫
X

(
g′(νk + ηk + βx)− g′(νk + βx)

)
f
(r)
k (x)dx,

∂θ◦k
∂η◦k

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

=

∫
X
g′(νk + ηk + βx)f

(r)
k (x)dx,

∂θ◦k
∂β◦

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

=

∫
X

(
g′(νk + ηk + βx)− g′(νk + βx)

)
xf

(r)
k (x)dx,

(S3.6.7)

for k = 1, . . . ,K, where we use the notation g′(x) = d
dxg(x). All other partial derivatives in the first

term of (S3.6.6) are 0.

The second term in (S3.6.6) is given by

∂(ν◦1:K , η
◦
1:K , β

◦)

∂δ1:K

∣∣∣∣
(ν1:K ,η1:K ,β,0K×1)

= lim
n(r+e)→∞

[
E
(
M⊤

1 DM1

)]−1
E
(
M⊤

1 DM2

)
, (S3.6.8)

where

• M1 is the n(r+e)× (2K + d) design matrix for model (S3.6.1), containing columns corresponding

to (ν1:K , η1:K , β), and

• The full design matrix is [M1,M2], where the n(r+e) × K matrix M2 contains columns corre-

sponding to δ1:K (i.e.,subgroup-specific indicators of the EC group).

Remark S3. The Jacobians inB,
∂θ◦1:K

∂(ν◦1:K ,η◦1:K ,β◦) and
∂(ν◦1:K ,η◦1:K ,β◦)

∂δ1:K
, depend on the unknown parameters

(ν1:K , η1:K , β) and the unknown RCT covariate distributions f
(r)
k for k = 1, . . . ,K. Therefore B is

unobserved. However, B can be estimated consistently using the same plug-in estimation strategy

described in Remark S1 (using the weighted definition of D).

Proposition S3 and Claim S5 can be proved following the same arguments in Section S3.3.2 with

a few variations. In particular, Proposition S3 can be proved following the proof of Proposition S1

with the following changes:

• To show that
(
ν̂
(r+e)
1:K , η̂

(r+e)
1:K , β̂(r+e), θ̂

(r+e)
1:K

)
converges in probability to some point (ν◦1:K , η

◦
1:K , β

◦, θ◦1:K),

the definitions of the observed log likelihood function On and the limiting log likelihood L should

be updated to:

– include the weights (i.e.,w
(r)
i , w

(e)
i in On and w

(r)
i,∗ , w

(e)
i,∗ in L), and

– use the generic exponential family likelihood function instead of the binomial likelihood

function.

• The Taylor expansion of θ◦1:K at δ1:K = 0K×1 (i.e., expression (S3.6.5)) is based on the same

arguments as before.

In addition, Claim S5 can be proved following the proof of Claim S1 but with the updated

definition of D (including the weights and the generic link function g) because (i) the first

Jacobian in (S3.6.6) only depends on the definition of the difference of means θ1:K (expression

(S3.6.3)), and (ii) the second Jacobian in (S3.6.6) only depends on Fisher information matrices,

which have the same generic form in GLMs.
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S3.7 Supplementary simulations for additional input estimators θ̂
(r+e)
1:K

S3.7.1 Bayesian causal forests

In the setting of Section 3.1 (continuous outcome with covariates), we define θ̂
(r+e)
1:K using Bayesian

causal forests. In particular, we consider

1. the Bayesian causal forest model in Hahn et al. (2020),

E
(
Y

(r)
i |W (r)

i , T
(r)
i , X

(r)
i

)
= µ

(
X

(r)
i ,W

(r)
i , w

(r)
i

)
+ τ

(
X

(r)
i ,W

(r)
i , w

(r)
i

)
T
(r)
i ,

E
(
Y

(e)
i |W (e)

i , X
(e)
i

)
= µ

(
X

(e)
i ,W

(e)
i , w

(e)
i

)
,

(S3.7.1)

where µ and τ are nonparametric functions that are given independent BART (Bayesian additive

regression tree) priors and wi denote propensity scores as defined in Section 3.3. We assume

that the outcomes Y
(r)
i and Y

(e)
i share the same control mean function µ in (S3.7.1) and are

Gaussian with variance ϕ2 noise. We use the prior suggested in Hahn et al. (2020) and the R

package ‘bcf‘.

2. the subgroup-specific treatment effects

θk =
1

n
(r)
k,·

n
(r)
k,·∑

i=1

E
(
Y

(r)
i |W (r)

i = k, T
(r)
i = 1, X

(r)
i

)
− 1

n
(r)
k,·

n
(r)
k,·∑

i=1

E
(
Y

(r)
i |W (r)

i = k, T
(r)
i = 0, X

(r)
i

)
and compute the posterior distribution of θk under model (S3.7.1). The estimates θ̂

(r+e)
1:K are the

posterior mean of θ1:K .

3. the RCT-only primary analysis is identical as in Section 3.1.

We harmonize θ̂
(r+e)
1:K to θ̂(r) using λ = ∞ and Σ equal to the posterior covariance matrix of θ1:K .

We conducted simulations using the same data-generating models as in Section 3.1 (see the

description of Figure 4). Figure S6 shows the standard deviation, bias, and root mean squared error

(RMSE) of the estimates of θ1, averaging over 1,000 replicates per scenario. Discordance is defined

as E
∣∣∣π⊤θ̂1:K − θ̂(r)

∣∣∣. We can see that the Bayesian causal forest estimator is typically biased, and

when the SDM assumption is met (Scenarios 1 and 2) harmonization reduces its bias and RMSE.

In addition, harmonization is able to completely reduce the discordance between the Bayesian causal

forest estimator and θ̂(r).

S3.7.2 Bayesian logistic regression with borrowing across subgroups

We consider the same setting of Section 3.2 with binary outcomes. There are several approaches

to borrow information across subgroups that allow one to leverage external data, including multi-

source exchangeability models (Kotalik et al., 2021), commensurate priors (Hobbs et al., 2012), semi-

parametric causal forest models (Hahn et al., 2020), and hierarchical random effects models (Jones

et al., 2011) among others. Here we define θ̂
(r+e)
1:K using a hierarchical Bayesian model with exchangeable

random effects for (i) subgroup-specific control parameters, (ii) subgroup-specific treatment effects,

and (iii) subgroup-specific parameters in the external population. In particular, in our simulations:
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Figure S6: Supplementary simulation study in the linear model setting (Section 3.1). Metrics of
interest: Bias, MSE, discordance, standard deviation. Estimators: (1) “Pooled”, as defined in Section
3.1, (2) “BD Harmonized”, the BD harmonized estimator in Section 3.1, (3) “BCF”, the Bayesian
causal forest estimator, (4) “Harmonized BCF”, a harmonized version of the causal forest estimator,
and (5) “RCT-only”, the RCT-only estimator in Section 3.1.
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1. Similarly to Jones et al. (2011), we use the Bayesian hierarchical model

p
(
Y

(r)
i = 1|W (r)

i , T
(r)
i , X

(r)
i

)
= g

(
ν
W

(r)
i

+ η
W

(r)
i

T
(r)
i + β⊤X

(r)
i

)
,

p
(
Y

(e)
i = 1|W (e)

i , X
(e)
i

)
= g

(
ν
W

(e)
i

+ δ
W

(e)
i

+ β⊤X
(e)
i

)
,

νk

δk

ηk

 iid∼ N



mν

mδ

mη

 , S
 , k = 1, . . . ,K,

(S3.7.2)

where g(x) = 1
1+e−x and the exchangeable prior on ν1:K , δ1:K , and η1:K induces borrowing

of information across subgroups (for the RCT control parameters, the EC distortion parame-

ters, and treatment effects). Model (S3.7.2) is completed with a weakly informative prior on

mν , mδ, mη, β
iid∼ N(0, 2.5) and the prior for the covariance matrix S is specified following

the approach in Goodrich et al. (2020). This model expresses an a priori belief that the RCT

control parameters, the EC distortion parameters, and the treatment effects are similar but

not identical across subgroups. As previously discussed in the literature, when there is high

heterogeneity across subgroups (of νk, δk, or ηk) estimation may be biased (Jones et al., 2011).

More sophisticated approaches to borrow across subgroups and include EC data are possible

with other models, for example Kotalik et al. (2021).

We approximate the posterior of model (S3.7.2) using the rstanarm R package (Goodrich et al.,

2020).

2. We defined the subgroup-specific treatment effects θk in equation (30) (i.e.,the difference of mean

outcome probabilities in the RCT population under treatment and control therapies). Then for

θ̂
(r+e)
1:K we report the posterior mean of θ1:K . We harmonize θ̂

(r+e)
1:K to θ̂(r) using λ = ∞ and Σ

equal to the posterior covariance matrix of θ1:K under model (S3.7.2).

In the simulations we have the same data-generating process as in Section 3.2 (logistic model

(32), with K = 5 subgroups, and the covariates’ distributions used to simulate trials identical to

those used for Figure 5). Similarly to the results described in Section 3.2, Figure S7 illustrates that

harmonization reduces bias and MSE of the hierarchical Bayesian estimator θ̂
(r+e)
1:K when the SDM

assumption holds. We note that in Scenario 1, with identical data distribution in the control arm and

the external control group, the hierarchical Bayesian estimator (“HB”) is biased as expected due to

borrowing of information across subgroups; this bias is reduced through harmonization. The same

reduction is observed in Scenarios 2 and 3 and contributes to the MSE reduction in the third column

of Figure S7. Across all scenarios, harmonization eliminates discordance between θ̂
(r+e)
1:K and θ̂(r), as

expected since λ = ∞.

S3.7.3 The propensity score adjusted power prior method

Here we consider harmonization of another dynamic borrowing method, the propensity score adjusted

power prior method of Lin et al. (2019). We follow the work of Lin et al. (2019) and define θ̂
(r+e)
1:K as

follows:

1. For each patient in the RCT and EC, we compute the propensity score ρ̂
(
W

(r)
i , X

(r)
i

)
or
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Figure S7: Supplementary simulation study in the logistic model setting (Section 3.2). Metrics of
interest: Bias, MSE, discordance, standard deviation. Estimators: (1) “Pooled”, as defined in Section
3.2, (2) “BD Harmonized”, the BD harmonized estimator in Section 3.2, (3) “HB”, the hierarchical
Bayesian estimator with borrowing across subgroups, (4) “Harmonized HB”, a harmonized version of
the hierarchical Bayesian estimator, and (5) “RCT-only”, the RCT-only estimator in Section 3.2.

39



ρ̂
(
W

(e)
i , X

(e)
i

)
respectively. Here ρ̂ is a regression function giving values between 0 and 1 that

expresses the relative density of any (w, x) combination in the RCT population compared to the

EC group. We used the same binary regression procedure as in McCaffrey et al. (2004). This is

implemented in the twang package in R.

2. Matching is used to select a list of patients E′ from the EC group (Lin et al., 2019).

3. We consider the likelihood components

l
(r)
i (η1:K , ν1:K , β) =

[
g
(
ν
W

(r)
i

+ η
W

(r)
i

T
(r)
i + β⊤X

(r)
i

)]Y (r)
i
[
1− g

(
ν
W

(r)
i

+ η
W

(r)
i

T
(r)
i + β⊤X

(r)
i

)]1−Y
(r)
i
,

where g(x) = 1
1+e−x , and

l
(e)
i (η1:K , ν1:K , β) =

[
g
(
ν
W

(e)
i

+ β⊤X
(e)
i

)]Y (e)
i
[
1− g

(
ν
W

(e)
i

+ β⊤X
(e)
i

)]1−Y
(e)
i
.

Like our model (29) in Section 3.2, the unknown parameters are (η1:K , ν1:K , β). Building on

the power prior ideas discussed in Ibrahim et al. (2015)) and Lin et al. (2019)), inference is based

on the following distribution

p
(
η1:K , ν1:K , β|D(r), D(e)

)
∝

n(r)∏
i=1

l
(r)
i (η1:K , ν1:K , β)

×p (η1:K , ν1:K , β)
∏
i∈E′

l
(e)
i (η1:K , ν1:K , β)

ρ̂
(e)
i ,

(S3.7.3)

where p (η1:K , ν1:K , β) is a prior distribution. We sampled from (S3.7.3) using the JAGS soft-

ware.

4. We define the subgroup-specific treatment effects θk as in equation (30) (i.e., the difference of

mean outcome probabilities in the RCT population under treatment and control therapies).

Then for θ̂
(r+e)
1:K we report the posterior mean of θ1:K . For θ̂h1:K , we harmonize θ̂

(r+e)
1:K to θ̂(r) (as

in Section 3.2) using λ = ∞ and Σ equal to the posterior covariance matrix of θ1:K based on

(S3.7.3).

To assess this propensity score adjusted power prior method before and after harmonization,

we conducted simulations, using the scenarios in Section 3.2 (logistic model (32), K = 5 subgroups).

The distributions used to simulate trials are identical to those used for Figure 5. We computed θ̂
(r+e)
1:K

and θ̂h1:K using the outlined procedure. Figure S8 summarizes the results. As for other methods

(the Bayesian causal forest and the Bayesian hierarchical model), harmonization of the propensity

score adjusted power prior method can reduce bias, RMSE, and discordance between θ̂(r) and the

subgroup-specific estimates in plausible scenarios.

S3.8 Testing the systematic distortion mechanism (SDM) assumption

Several approaches can be used to test the SDM assumption. Here we describe an easy to interpret

procedure:

1. Specify a model for the RCT and EC data that includes subgroup-specific distortion parameters.

For example

Y
(r)
i |W (r)

i , T
(r)
i , X

(r)
i

ind.∼ N
(
µ
W

(r)
i

+ θ
W

(r)
i

T
(r)
i + β⊤X

(r)
i , ϕ2

)
,

Y
(e)
i |W (e)

i , X
(e)
i

ind.∼ N
(
µ
W

(e)
i

+ γ
W

(e)
i

+ β⊤X
(e)
i , ϕ2

)
,
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Figure S8: Supplementary simulations. Metrics of interest: Bias, MSE, discordance, and standard
deviation. Estimators: (1) “Pooled”, as defined in Section 3.2, (2) “BD Harmonized”, the BD harmo-
nized estimator in Section 3.2, (3) “PWPP”, the propensity score adjusted power prior estimator, (4)
the harmonized version of the propensity score adjusted power prior estimator, and (5) the RCT-only
estimator, as defined in Section 3.2. Simulation scenarios are identical to those described in Section
3.2. We considered 1,000 replicates per scenario.
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where γ1:K is the subgroup-specific distortion parameter, as in Section 3.1, or a GLM (e.g.,

model (32) in Section 3.2).

2. Conduct (A) a likelihood ratio test or (B) a bootstrap test of the null hypothesis that the

distortion parameter is constant across subgroups. In other words, test the null hypothesis

H0 : γ1 = γ2 = . . . γK = γ for some γ ∈ R.

3. If the test rejects H0 at a desired level α, evidence against the SDM assumption is reported.

S3.9 A bootstrap procedure to estimate and remove the bias ψ1:K of a pooled

estimator

In addition to BD harmonization, there are other ways to estimate and subtract the bias ψ1:K . For

example, to analyze datasets
(
D(r), D(e)

)
with binary outcomes, the investigator can consider the

following procedure (similar to parametric bootstrap):

1. Using the original datasets
(
D(r), D(e)

)
, estimate by MLE the regression model

p
(
Y

(r)
i = 1|W (r)

i , T
(r)
i , X

(r)
i

)
= g

(
ν
W

(r)
i

+ η
W

(r)
i

T
(r)
i + β⊤X

(r)
i

)
,

p
(
Y

(e)
i = 1|W (e)

i , X
(e)
i

)
= g

(
ν
W

(e)
i

+ δ + β⊤X
(e)
i

)
,

(S3.9.1)

where g(x) = 1
1+e−x , and the outcomes are independent. This model includes a SDM.

2. Estimate the bias of θ̂
(r+e)
1:K (defined by equation (31)) as follows:

(a) For replicates a = 1, . . . , R, sample new datasets
(
D

(r)
a , D

(e)
a

)
with identical (X,W, T )

patient profiles as in the actual datasets
(
D(r), D(e)

)
and patient outcomes Y sampled

from the estimated regression model with SDM (S3.9.1).

(b) For each replicate a, compute the pooled estimate θ̂
(r+e)
1:K,a based on

(
D

(r)
a , D

(e)
a

)
and the

assumption δ = 0.

(c) Compute the bias estimate ψ̂1:K = R−1
∑R

a=1 θ̂
(r+e)
1:K,a − θ̃

(SDM)
1:K , where θ̃

(SDM)
1:K is the value

of the treatment effect (defined in equation (30)) under model (S3.9.1) with the MLE

parametrization (from the 1st step of the procedure).

3. Compute the bias-corrected estimate θ̂sub1:K = θ̂
(r+e)
1:K − ψ̂1:K .

Importantly, θ̂sub1:K does not achieve the paper goal of harmonization (i.e., π⊤θ̂sub1:K ̸= θ̂(r)). Simi-

larly, a treatment effect estimate based directly on model (S3.9.1) does not achieve harmonization.

We illustrate simulations in which we computed θ̂sub1:K as well as the BD harmonized estimator

θ̂h1:K . The simulation scenarios are identical to those described in Section 3.2 (logistic regression).

Figure S9(A) shows that these two estimators present a high correlation of > 0.9. Figure S9(B) shows

that they are based on closely related bias corrections. Figure S9(C) shows that, unlike the harmonized

estimator, with θ̂sub1:K we have π⊤θ̂sub1:K ̸= θ̂(r).

S3.10 BD harmonization of semiparametric and nonparametric estimators

We illustrate how to compute a BD harmonized estimator in the absence of analytic results (e.g.

equation (24)) to derive or estimate the bias ψ1:K = E
(
θ̂
(r+e)
1:K

)
− θ1:K . The idea is to (i) estimate

42



Figure S9: Comparison between θ̂sub1:K and θ̂h−BD
1:K in Section 3.2 (logistic regression). (A) Scatterplot of

200 replicates of the estimates θ̂h−BD
1 and θ̂sub1 . (B) Scatterplot of 200 replicates of the bias corrections

θ̂h−BD
1 − θ̂

(r+e)
1 and θ̂sub1 − θ̂

(r+e)
1 . (C) Histogram of 2,000 replicates of the discrepancy π⊤θ̂sub1:K − θ̂(r).

the conditional distributions of Y
(r)
i and Y

(e)
i under the SDM assumption, (ii) resample the outcomes

from these distributions and recompute R times the estimates θ̂
(r+e)
1:K , and (iii) calculate the average

difference between these R estimates and the treatment effect in the resampling model.

For example, consider θ̂
(r+e)
1:K , the MLE of θ1:K (see equation (30)) based on the model

Y
(r)
i = µ

W
(r)
i

+ θ
W

(r)
i

T
(r)
i + f

(
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(r)
i

)
+ ϵ

(r)
i ,
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(e)
i = µ

W
(e)
i

+ f
(
X

(e)
i

)
+ ϵ

(e)
i ,

(S3.10.1)

where ϵ
(r)
i , ϵ

(e)
i

iid∼ N(0, ϕ2) and the function f is a natural cubic spline with fixed knots.

There are several possible ways to estimate the bias vector ψ1:K caused by SDMs. One approach

is to:

1. Estimate the conditional distributions Y
(r)
i |X(r)

i ,W
(r)
i , T

(r)
i and Y

(e)
i |X(e)

i ,W
(e)
i under the as-

sumption that

E
(
Y

(r)
i |X(r)

i ,W
(r)
i = k, T

(r)
i = 0

)
− E

(
Y

(e)
i |X(e)

i ,W
(e)
i = k

)
= γ,

for some γ ∈ R. In particular, we can fit the model

Y
(r)
i = µ

W
(r)
i

+ θ
W

(r)
i

T
(r)
i + f

(
X

(r)
i

)
+ ϵ
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i ,
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(e)
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i
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i
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+ γ + ϵ

(e)
i ,

(S3.10.2)

where ϵ
(r)
i , ϵ

(e)
i

iid∼ N(0, ϕ2) and f is a cubic spline with fixed knots. Alternatively, one can

consider using neural networks, Gaussian processes, or tree-based models for f .

2. For replicates a = 1, . . . , R, sample new datasets
(
D

(r)
a , D

(e)
a

)
with identical (X,W, T ) patient

triplets as in the actual datasets
(
D(r), D(e)

)
and patient outcomes Y sampled from the estimated

SDM model (S3.10.2). For each replicate, compute the estimate θ̂
(r+e)
1:K,a based on

(
D

(r)
a , D

(e)
a

)
and model (S3.10.1).

3. Compute the bias estimate ψ̂1:K = R−1
∑R

a=1 θ̂
(r+e)
1:K,a − θ̃

(SDM)
1:K , where θ̃

(SDM)
1:K is the MLE of θ1:K

based on model (S3.10.2) and the actual data
(
D(r), D(e)

)
.

Then we can harmonize θ̂
(r+e)
1:K using λ = ∞ and choosing a Σ matrix that satisfies Σπ ∝ ψ̂1:K .
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Figure S10: Replication of Figure 4, for alternate estimators defined by model (S3.10.1) (“Spline”)
and a BD harmonized version (steps i.-iii., “BD Harmonized Spline”).

We illustrate this strategy by simulating data from the same Scenarios 1-3 as in Section 3.1, but

using the spline model (S3.10.1) (with knots at the quintiles of Xi) to define θ̂
(r+e)
1:K and steps (i)-(iii)

to choose Σ. Figure S10 is nearly identical to Figure 4 in the paper, with the only difference that here

θ̂
(r+e)
1:K is based on the spline model (S3.10.1). BD harmonizing has similar effects as those described

through Figure 4 when θ̂
(r+e)
1:K is based on the linear model (21).

S4 Additional material for Section 4

S4.1 Imputation of censored 12-month survival outcomes

Let T
(r)
i and T

(e)
i be the overall survival (OS) times (in days) for patients in the trial and real world

data sets respectively.

In the trial data set, roughly 3% of patients had their OS time censored before 12 months of

follow up. In the real world data set roughly 9% of patients were similarly censored. We singly

imputed the 12-month overall survival status for these patients as follows:

1. Separately for each data set s = r, e estimate the Cox model

h
(
t|X(s)

i

)
= h0(t) exp

{
β⊤X

(s)
i

}
,

where h(t|X(s)
i ) is the conditional hazard at time t, h0(t) is the baseline hazard at time t, and

X
(s)
i is a covariate vector including patient i’s age, sex, Karnofsky performance status, MGMT

methylation status, and extent of resection. We use the coxph function in R to fit the models.

2. Separately for each data set estimate the survival function P
(
T
(s)
i > t|X(s)

i

)
, using the fitted

Cox model from step 1 and the Kalbfleisch-Prentice method (via the survfit function in R).

3. For a patient i in study s censored at time t0 < 365, the probability that their true overall

survival time T
(s)
i is

p
(s)
i =

P
(
T
(s)
i > 365|X(s)

i

)
P
(
T
(s)
i > t0|X(s)

i

) .

4. For censored patients, set their missing 12-month overall survival status Y
(s)
i = 1 with probability
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p
(s)
i and Y

(s)
i = 0 otherwise.

S4.2 Detailed results

Pooled Weighted Harmonized RCT-Only

Subgroup 1
Bias -0.040 -0.016 0.016 0.011
Standard Deviation 0.083 0.092 0.097 0.131
RMSE 0.092 0.094 0.098 0.131

Subgroup 2
Bias -0.118 -0.086 -0.012 -0.002
Standard Deviation 0.053 0.060 0.081 0.086
RMSE 0.129 0.105 0.082 0.086

Subgroup 3
Bias -0.084 -0.042 -0.027 -0.001
Standard Deviation 0.107 0.118 0.119 0.173
RMSE 0.136 0.125 0.122 0.173

Subgroup 4
Bias -0.017 -0.015 0.022 -0.002
Standard Deviation 0.058 0.063 0.069 0.087
RMSE 0.061 0.065 0.073 0.087

Table S1: Operating characteristics of the four estimators in the simulations of Section 4. Results are
based on 1,000 in silico GBM trials/EC data sets simulated as described in Section 4.

S5 Harmonization in the presence of omitted variable bias

Importance of the definition of θ̂
(r+e)
1:K . First, we note that the influence of model misspecification on

treatment effect’s estimates depends on the definition of θ̂
(r+e)
1:K . Some subgroup analysis procedures,

including approaches developed in the causal inference literature over the past few decades (Cole

and Hernan, 2008; Tipton, 2013), may be more robust to various types of model misspecification

compared to MLEs. As we emphasize in Supplementary Section S3.7, harmonization can be applied

to any subgroup analysis estimator θ̂
(r+e)
1:K .

An example of harmonization when θ̂
(r+e)
1:K is based on a misspecified model . To illustrate how

harmonization performs when θ̂
(r+e)
1:K is based on a misspecified model, we conduct simulations in a

setting similar to the one in Section 3.1 (linear model) but with a quadratic term in the true data-

generating model. The quadratic component is not included in the working model used to compute

θ̂
(r+e)
1:K . For simplicity, K = 2 and we have only a single covariate X. The true data-generating model

has conditional moments

E
(
Y

(r)
i |W (r)

i , T
(r)
i , X

(r)
i

)
= µ

W
(r)
i

+ θ
W

(r)
i

T
(r)
i + β1X

(r)
i + β2X

(r)2

i ,

E
(
Y

(e)
i |W (e)

i , X
(e)
i

)
= µ

W
(e)
i

+ γ
W

(e)
i

+ β1X
(e)
i + β2X

(e)2

i , and

V ar
(
Y

(r)
i |W (r)

i , T
(r)
i , X

(r)
i

)
= V ar

(
Y

(e)
i |W (e)

i , X
(e)
i

)
= 1,

(S5.0.1)

that is the mean functions are quadratic, not linear, in X. The distribution of X depends on both the

subgroup and data source (RCT or external), with logX
(r)
i |
[
W

(r)
i = k

]
iid∼ N

(
k
5 , 0.25

2
)
in the RCT
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Figure S11: An example with model misspecification. Sampling distributions (boxplots, from 2,000
simulation replicates) of four subgroup estimators. The distributions used to generate the data have
been described in the previous paragraphs. We include (i) a pooled OLS estimator as in (21) with
only a linear term for X, (ii) a weighted least squares (WLS) estimator with only a linear term for X
but propensity score weighting as defined in Section 3.3, and (iii-iv) BD-harmonized versions of the
pooled OLS and WLS estimators (see Proposition 2).

and logX
(e)
i |
[
W

(e)
i = k

]
iid∼ N

(
1
2 + k

5 , 0.25
2
)
in the EC. Also, the RCT control group intercepts are

µ1:2 = (0, 2), the treatment effects are θ1:2 = (0, 2), and the regression coefficients are β1 = β2 = 0.5.

We consider a “Scenario 1” where the EC data have no distortion mechanism with γ1:2 = (0, 0) and

a “Scenario 2” where there is a systematic distortion mechanism with γ1:2 = (−2,−2). The RCT has

sample sizes n
(r)
1,1 = n

(r)
2,1 = 100 and n

(r)
1,0 = n

(r)
2,0 = 50 (i.e. 2:1 randomization), while the EC has sample

sizes n
(e)
1,0 = n

(e)
2,0 = 150.

In Figure S11 we show the sampling distributions (obtained by simulations) of four estimators of

θ1:2: (i) a pooled OLS estimator as in (21) with only a linear term for X, (ii) a BD-harmonized version

of the OLS estimator (see Proposition 2), (iii) a weighted least squares (WLS) estimator with just a

linear term for X but propensity score weighting as defined in Section 3.3, and (iv) a BD-harmonized

version of the WLS estimator (see Proposition 2). Even in Scenario 1, where the EC data have no

distortions, the misspecified OLS estimator can have moderate bias (= 0.27 in subgroup k = 1). In

contrast, WLS estimator using propensity scores is more robust to a misspecified outcome regression

and the bias is negligible in Scenario 1. In both scenarios harmonization tends to reduce the bias of

the OLS and WLS estimates θ̂
(r+e)
1:K .

An analytic result. We focus on a class of scenarios that includes the the previous example and
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potential unmeasured confounders. We discuss with analytic expressions the bias before and after

harmonization. The estimators θ̂
(r+e)
1:K and θ̂h1:K are defined exactly as in Section 3.1. In other words,

θ̂
(r+e)
1:K is the OLS estimator under model (21) and θ̂h1:K is the BD harmonized version of θ̂

(r+e)
1:K , which

is computed assuming model (21) and the SDM assumption (γ1 = · · · = γK).

We assume that the true data-generating model has conditional moments

E
(
Y

(r)
i |W (r)

i , T
(r)
i , X

(r)
i , Z

(r)
i

)
= µ

W
(r)
i

+ θ
W

(r)
i

T
(r)
i + β⊤X

(r)
i + ξ⊤Z

(r)
i ,

E
(
Y

(e)
i |W (e)

i , X
(e)
i , Z

(e)
i

)
= µ

W
(e)
i

+ γ
W

(e)
i

+ β⊤X
(e)
i + ξ⊤Z

(e)
i , and

V ar
(
Y

(r)
i |W (r)

i , T
(r)
i , X

(r)
i , Z

(r)
i

)
= V ar

(
Y

(e)
i |W (e)

i , X
(e)
i , Z

(e)
i

)
= ϕ2.

(S5.0.2)

Here Z
(r)
i and Z

(e)
i are vectors of unmeasured confounders. The design matrix for model (S5.0.2) may

be written as M =
[
M1, M2, M3

]
, where: M1 contains the columns corresponding to µ1:K , θ1:K ,

and β (i.e., those in the working model used to compute θ̂
(r+e)
1:K );M2 contains the columns corresponding

to γ1:K (i.e., the EC distortion mechanism); and M3 contains the columns corresponding to ξ (i.e.,

omitted covariates). Note that the simulation example (S5.0.1) above is a special case of (S5.0.2).

Under model (S5.0.2), when the SDM assumption holds (γk = γ for all k = 1, . . . ,K and some

γ ∈ R) the pooled estimator has bias

Bias
(
θ̂
(r+e)
1:K , θ1:K

)
= γb+ ϵ1:K , with (S5.0.3)

b =
[
0K×K , IK , 0K×d

] (
M⊤

1 M1

)−1
M⊤

1 M21K×1, and

ϵ1:K =
[
0K×K , IK , 0K×d

] (
M⊤

1 M1

)−1
M⊤

1 M3ξ.

This result can be derived through linear algebra, very similarly to the derivations in Supplementary

Section S3.1.1. Here γb is the bias when there are no ommitted covariates (see equation (24) when

γ1 = · · · = γK = γ) and ϵ1:K is the additional bias in θ̂
(r+e)
1:K due to the omitted covariates (note that

θ̂
(r+e)
1:K = 0K×1 when the omitted covariate regression coefficient ξ is null).

Since harmonization is a linear transformation of θ̂
(r+e)
1:K and θ̂(r) we can derive the bias of θ̂h1:K :

Bias
(
θ̂h1:K , θ1:K

)
= ϵ1:K −

(
π⊤ϵ1:K
π⊤γb

)
γb. (S5.0.4)

Similar expressions for the bias can be obtained when the subjects are weighted using propensity

score arguments, though the results would be asymptotic. The asymptotic bias would be the same as

(S5.0.3) except the terms M⊤
1 M1, M

⊤
1 M2, and M⊤

1 M3 need to be replaced by M⊤
1 DM1, M

⊤
1 DM2,

and M⊤
1 DM3, where D is a diagonal matrix of asymptotic weights (see Supplementary Section S3.6

where we explain the role of the weights D).

From the bias expressions (S5.0.3) and (S5.0.4) we can see that harmonization can either reduce

or increase the bias of θ̂
(r+e)
k . The comparison between the biases before and after harmonization

depends primarily on (a) the joint distribution of the omitted covariates and the variables in the

model used to compute θ̂
(r+e)
1:K (i.e., M⊤

1 M3) and (b) the magnitude of the omitted covariate coeffients

ξ. The expressions (S5.0.3) and (S5.0.4) can be useful to explore the sensitivity of the estimators

θ̂
(r+e)
1:K and θ̂h1:K .
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